Preparation and characterization of stainless steel 316L/HA biocomposite
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000200005 |
Resumo: | The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (%) HA) were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). |
id |
ABMABCABPOL-1_8ba9dba123f15bb47886f0a7bcac20be |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392013000200005 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Preparation and characterization of stainless steel 316L/HA biocompositebiocompositestainless steels 316Lhydroxyapatitemechanical alloyingThe austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (%) HA) were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).ABM, ABC, ABPol2013-04-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000200005Materials Research v.16 n.2 2013reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392012005000182info:eu-repo/semantics/openAccessSilva,GilbertBaldissera,Márcia ReginaTrichês,Eliandra de SousaCardoso,Kátia Reginaeng2013-03-19T00:00:00Zoai:scielo:S1516-14392013000200005Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2013-03-19T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Preparation and characterization of stainless steel 316L/HA biocomposite |
title |
Preparation and characterization of stainless steel 316L/HA biocomposite |
spellingShingle |
Preparation and characterization of stainless steel 316L/HA biocomposite Silva,Gilbert biocomposite stainless steels 316L hydroxyapatite mechanical alloying |
title_short |
Preparation and characterization of stainless steel 316L/HA biocomposite |
title_full |
Preparation and characterization of stainless steel 316L/HA biocomposite |
title_fullStr |
Preparation and characterization of stainless steel 316L/HA biocomposite |
title_full_unstemmed |
Preparation and characterization of stainless steel 316L/HA biocomposite |
title_sort |
Preparation and characterization of stainless steel 316L/HA biocomposite |
author |
Silva,Gilbert |
author_facet |
Silva,Gilbert Baldissera,Márcia Regina Trichês,Eliandra de Sousa Cardoso,Kátia Regina |
author_role |
author |
author2 |
Baldissera,Márcia Regina Trichês,Eliandra de Sousa Cardoso,Kátia Regina |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Silva,Gilbert Baldissera,Márcia Regina Trichês,Eliandra de Sousa Cardoso,Kátia Regina |
dc.subject.por.fl_str_mv |
biocomposite stainless steels 316L hydroxyapatite mechanical alloying |
topic |
biocomposite stainless steels 316L hydroxyapatite mechanical alloying |
description |
The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (%) HA) were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000200005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000200005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392012005000182 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.16 n.2 2013 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212662066020352 |