Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800393 |
Resumo: | The aim of this work was to study the incorporation of lead containing TV tube glass waste as a method to provide alternative raw material for aluminous electrical porcelain. For this purpose, aluminous porcelain formulations containing up to 30 wt.% of TV tube glass waste as a replacement for traditional flux material (sodium feldspar) were pressed and fired in air at 1300 ºC using a fast-firing cycle (< 60 min). X-ray diffraction (XRD), scanning electron microscopy (SEM), linear shrinkage, apparent density, water absorption, and electrical resistivity have been carried out. The results indicated that the aluminous porcelain pieces containing up to 30 wt.% of TV tube glass waste rich in PbO with water absorption between 0.42 and 0.45% and volume electrical resistivity between 1.91 and 2.93 x 1011 Ω.cm have high potential to work as electrical insulator material. This use of lead containing TV tube glass waste can contribute greatly to reducing the environmental impacts related to it, and also save the sources of non-renewable raw materials used in the electrical porcelain sector. |
id |
ABMABCABPOL-1_8cc96ad19bbe00ec81a660fc50addce3 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000800393 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous PorcelainTV tube glasssolid wastealuminous porcelainpropertiesmicrostructureThe aim of this work was to study the incorporation of lead containing TV tube glass waste as a method to provide alternative raw material for aluminous electrical porcelain. For this purpose, aluminous porcelain formulations containing up to 30 wt.% of TV tube glass waste as a replacement for traditional flux material (sodium feldspar) were pressed and fired in air at 1300 ºC using a fast-firing cycle (< 60 min). X-ray diffraction (XRD), scanning electron microscopy (SEM), linear shrinkage, apparent density, water absorption, and electrical resistivity have been carried out. The results indicated that the aluminous porcelain pieces containing up to 30 wt.% of TV tube glass waste rich in PbO with water absorption between 0.42 and 0.45% and volume electrical resistivity between 1.91 and 2.93 x 1011 Ω.cm have high potential to work as electrical insulator material. This use of lead containing TV tube glass waste can contribute greatly to reducing the environmental impacts related to it, and also save the sources of non-renewable raw materials used in the electrical porcelain sector.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800393Materials Research v.20 suppl.2 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2016-0921info:eu-repo/semantics/openAccessSantos,Talita FariaPaes Junior,Herval RamosHolanda,José Nilson Françaeng2018-04-12T00:00:00Zoai:scielo:S1516-14392017000800393Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-04-12T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
title |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
spellingShingle |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain Santos,Talita Faria TV tube glass solid waste aluminous porcelain properties microstructure |
title_short |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
title_full |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
title_fullStr |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
title_full_unstemmed |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
title_sort |
Incorporation of Lead Containing TV Tube Glass Waste in Aluminous Porcelain |
author |
Santos,Talita Faria |
author_facet |
Santos,Talita Faria Paes Junior,Herval Ramos Holanda,José Nilson França |
author_role |
author |
author2 |
Paes Junior,Herval Ramos Holanda,José Nilson França |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santos,Talita Faria Paes Junior,Herval Ramos Holanda,José Nilson França |
dc.subject.por.fl_str_mv |
TV tube glass solid waste aluminous porcelain properties microstructure |
topic |
TV tube glass solid waste aluminous porcelain properties microstructure |
description |
The aim of this work was to study the incorporation of lead containing TV tube glass waste as a method to provide alternative raw material for aluminous electrical porcelain. For this purpose, aluminous porcelain formulations containing up to 30 wt.% of TV tube glass waste as a replacement for traditional flux material (sodium feldspar) were pressed and fired in air at 1300 ºC using a fast-firing cycle (< 60 min). X-ray diffraction (XRD), scanning electron microscopy (SEM), linear shrinkage, apparent density, water absorption, and electrical resistivity have been carried out. The results indicated that the aluminous porcelain pieces containing up to 30 wt.% of TV tube glass waste rich in PbO with water absorption between 0.42 and 0.45% and volume electrical resistivity between 1.91 and 2.93 x 1011 Ω.cm have high potential to work as electrical insulator material. This use of lead containing TV tube glass waste can contribute greatly to reducing the environmental impacts related to it, and also save the sources of non-renewable raw materials used in the electrical porcelain sector. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800393 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800393 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2016-0921 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 suppl.2 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212671535710208 |