Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization

Detalhes bibliográficos
Autor(a) principal: Agrela,Sara Pereira de
Data de Publicação: 2019
Outros Autores: Lima,Luiz Rogério Pinho de Andrade, Souza,Rosemário Cerqueira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000600232
Resumo: High density polyethylene and high density polyethylene-clay nanocomposites were produced using direct solvent polymerization and a Ziegler catalyst system (TiCl4 and triethylaluminum in hexane). The produced polymer has a high average molecular weight and a multimodal molecular weight distribution composed of four distributions including a very high molecular weight component. The laboratory polymer has a thermal stability in inert atmosphere similar to the commercial high density polyethylene produced by Braskem. In oxidant atmosphere the produced polymer presents three thermal oxidation events above 400ºC due to the combustion of low, medium and high molecular weight molecules. The thermal oxidation of the nanocomposites is shifted and reduced for high temperatures indicating an improvement in the thermal stability of the polymeric matrix due to the clay barrier effect for gases and volatile compounds.
id ABMABCABPOL-1_96657a10944ede83ce505725906e3046
oai_identifier_str oai:scielo:S1516-14392019000600232
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent PolymerizationPolyethyleneNanocompositeThermal degradationClayIn situ polymerizationHigh density polyethylene and high density polyethylene-clay nanocomposites were produced using direct solvent polymerization and a Ziegler catalyst system (TiCl4 and triethylaluminum in hexane). The produced polymer has a high average molecular weight and a multimodal molecular weight distribution composed of four distributions including a very high molecular weight component. The laboratory polymer has a thermal stability in inert atmosphere similar to the commercial high density polyethylene produced by Braskem. In oxidant atmosphere the produced polymer presents three thermal oxidation events above 400ºC due to the combustion of low, medium and high molecular weight molecules. The thermal oxidation of the nanocomposites is shifted and reduced for high temperatures indicating an improvement in the thermal stability of the polymeric matrix due to the clay barrier effect for gases and volatile compounds.ABM, ABC, ABPol2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000600232Materials Research v.22 n.6 2019reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2019-0096info:eu-repo/semantics/openAccessAgrela,Sara Pereira deLima,Luiz Rogério Pinho de AndradeSouza,Rosemário Cerqueiraeng2020-03-06T00:00:00Zoai:scielo:S1516-14392019000600232Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2020-03-06T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
title Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
spellingShingle Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
Agrela,Sara Pereira de
Polyethylene
Nanocomposite
Thermal degradation
Clay
In situ polymerization
title_short Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
title_full Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
title_fullStr Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
title_full_unstemmed Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
title_sort Thermal Stability of High Density Polyethylene-Clay Nanocomposites Produced by in situ Solvent Polymerization
author Agrela,Sara Pereira de
author_facet Agrela,Sara Pereira de
Lima,Luiz Rogério Pinho de Andrade
Souza,Rosemário Cerqueira
author_role author
author2 Lima,Luiz Rogério Pinho de Andrade
Souza,Rosemário Cerqueira
author2_role author
author
dc.contributor.author.fl_str_mv Agrela,Sara Pereira de
Lima,Luiz Rogério Pinho de Andrade
Souza,Rosemário Cerqueira
dc.subject.por.fl_str_mv Polyethylene
Nanocomposite
Thermal degradation
Clay
In situ polymerization
topic Polyethylene
Nanocomposite
Thermal degradation
Clay
In situ polymerization
description High density polyethylene and high density polyethylene-clay nanocomposites were produced using direct solvent polymerization and a Ziegler catalyst system (TiCl4 and triethylaluminum in hexane). The produced polymer has a high average molecular weight and a multimodal molecular weight distribution composed of four distributions including a very high molecular weight component. The laboratory polymer has a thermal stability in inert atmosphere similar to the commercial high density polyethylene produced by Braskem. In oxidant atmosphere the produced polymer presents three thermal oxidation events above 400ºC due to the combustion of low, medium and high molecular weight molecules. The thermal oxidation of the nanocomposites is shifted and reduced for high temperatures indicating an improvement in the thermal stability of the polymeric matrix due to the clay barrier effect for gases and volatile compounds.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000600232
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000600232
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2019-0096
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.22 n.6 2019
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212675518201856