Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000800265 |
Resumo: | Surface treatments done in banana fibers (BFs) can generate significant superficial structural changes enabling the production of mechanically stronger composites. In this way, the objective of this study was to evaluate the physicochemical and mechanical properties of banana fibers of Prata specie from inner and outer leaf sheaths, when irradiated with UV light (λmax = 400 nm) during 7 (UV7) and 15 (UV15) days. Structural and microstructural characterizations for non- and irradiated fibers were performed by, FT-IR spectroscopy and Scanning Electron Microscopy (SEM), which showed the influence of UV irradiation on BFs surface and chemical structure. The Ea involved in the thermal degradation process of InNatura fiber (188.2 kJ.mol–1) was obtained using Differential Thermal Analysis (DTA/TG). The results obtained from mechanical characterization showed that the UV7 fibers presented significant improvement in tensile strength (89.77 MPa) and elastic modulus (238.94 MPa) as compared to tensile strength (69.99 MPa) and elastic modulus (87.40 MPa) of InNatura fibers. Statistical analysis using two-way ANOVA has showed that there were no differences between mechanical properties of BFs from inner to outer leaf sheaths. UV radiation has proved to be a clean method for BF surface treatment, which can improve the mechanical properties of composites based on these fibers. |
id |
ABMABCABPOL-1_9c568b592d5514c0d7386fbe0f16ae16 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392015000800265 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fibercompositesbanana fiberUV radiationSurface treatments done in banana fibers (BFs) can generate significant superficial structural changes enabling the production of mechanically stronger composites. In this way, the objective of this study was to evaluate the physicochemical and mechanical properties of banana fibers of Prata specie from inner and outer leaf sheaths, when irradiated with UV light (λmax = 400 nm) during 7 (UV7) and 15 (UV15) days. Structural and microstructural characterizations for non- and irradiated fibers were performed by, FT-IR spectroscopy and Scanning Electron Microscopy (SEM), which showed the influence of UV irradiation on BFs surface and chemical structure. The Ea involved in the thermal degradation process of InNatura fiber (188.2 kJ.mol–1) was obtained using Differential Thermal Analysis (DTA/TG). The results obtained from mechanical characterization showed that the UV7 fibers presented significant improvement in tensile strength (89.77 MPa) and elastic modulus (238.94 MPa) as compared to tensile strength (69.99 MPa) and elastic modulus (87.40 MPa) of InNatura fibers. Statistical analysis using two-way ANOVA has showed that there were no differences between mechanical properties of BFs from inner to outer leaf sheaths. UV radiation has proved to be a clean method for BF surface treatment, which can improve the mechanical properties of composites based on these fibers.ABM, ABC, ABPol2015-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000800265Materials Research v.18 suppl.2 2015reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1516-1439.371414info:eu-repo/semantics/openAccessBenedetto,Ricardo Mello DiGelfuso,Maria VirginiaThomazini,Danieleng2016-01-04T00:00:00Zoai:scielo:S1516-14392015000800265Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2016-01-04T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
title |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
spellingShingle |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber Benedetto,Ricardo Mello Di composites banana fiber UV radiation |
title_short |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
title_full |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
title_fullStr |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
title_full_unstemmed |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
title_sort |
Influence of UV Radiation on the Physical-chemical and Mechanical Properties of Banana Fiber |
author |
Benedetto,Ricardo Mello Di |
author_facet |
Benedetto,Ricardo Mello Di Gelfuso,Maria Virginia Thomazini,Daniel |
author_role |
author |
author2 |
Gelfuso,Maria Virginia Thomazini,Daniel |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Benedetto,Ricardo Mello Di Gelfuso,Maria Virginia Thomazini,Daniel |
dc.subject.por.fl_str_mv |
composites banana fiber UV radiation |
topic |
composites banana fiber UV radiation |
description |
Surface treatments done in banana fibers (BFs) can generate significant superficial structural changes enabling the production of mechanically stronger composites. In this way, the objective of this study was to evaluate the physicochemical and mechanical properties of banana fibers of Prata specie from inner and outer leaf sheaths, when irradiated with UV light (λmax = 400 nm) during 7 (UV7) and 15 (UV15) days. Structural and microstructural characterizations for non- and irradiated fibers were performed by, FT-IR spectroscopy and Scanning Electron Microscopy (SEM), which showed the influence of UV irradiation on BFs surface and chemical structure. The Ea involved in the thermal degradation process of InNatura fiber (188.2 kJ.mol–1) was obtained using Differential Thermal Analysis (DTA/TG). The results obtained from mechanical characterization showed that the UV7 fibers presented significant improvement in tensile strength (89.77 MPa) and elastic modulus (238.94 MPa) as compared to tensile strength (69.99 MPa) and elastic modulus (87.40 MPa) of InNatura fibers. Statistical analysis using two-way ANOVA has showed that there were no differences between mechanical properties of BFs from inner to outer leaf sheaths. UV radiation has proved to be a clean method for BF surface treatment, which can improve the mechanical properties of composites based on these fibers. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000800265 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392015000800265 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1516-1439.371414 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.18 suppl.2 2015 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212666680803328 |