Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000100108 |
Resumo: | This work aims to evaluate the influence of a Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic on the mechanical behavior of alumina. Composites were prepared from alumina with three different particle sizes and 7 to 21 vol% of an LZSA glass-ceramic composition (11.6Li2O-16.8ZrO2-68.2SiO2-3.4Al2O3,). Specimens were obtained by uniaxial pressing. The optimum sintering temperature and holding time were found to be different for each composite. Structural characterization (bulk density and crystalline phases); mechanical characterization (flexure strength, elastic modulus, fracture toughness, and fracture energy); and microstructural analyses were carried out. Fine-grained alumina-based composite containing 21 vol% of glass-ceramic (1470 ºC and 3 h holding time, 2.0% porosity) showed a fracture toughness of 4.93 MPa·m0.5, an elastic modulus of 210 GPa, a fracture energy of 57 J·m-2, and a flexural strength of 170 MPa, in very good agreement with values reported by the literature. An increase of 37-177% in the fracture energy due to 21 vol% LZSA addition in the alumina was achieved for the range of grain size obtained in this work. Even though the final composition included a glassy component, the observed mechanical properties confirmed the effectiveness of the crystalline phases that were formed from LZSA glass-ceramic in reducing the propagation of cracks. The results showed that the addition of the LZSA glass-ceramic improved the mechanical properties of alumina. |
id |
ABMABCABPOL-1_bccb8e9b1a04b0128ed7ba9d93bc2337 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392018000100108 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical BehaviorAluminaLZSA glass-ceramiccompositesmechanical behaviorThis work aims to evaluate the influence of a Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic on the mechanical behavior of alumina. Composites were prepared from alumina with three different particle sizes and 7 to 21 vol% of an LZSA glass-ceramic composition (11.6Li2O-16.8ZrO2-68.2SiO2-3.4Al2O3,). Specimens were obtained by uniaxial pressing. The optimum sintering temperature and holding time were found to be different for each composite. Structural characterization (bulk density and crystalline phases); mechanical characterization (flexure strength, elastic modulus, fracture toughness, and fracture energy); and microstructural analyses were carried out. Fine-grained alumina-based composite containing 21 vol% of glass-ceramic (1470 ºC and 3 h holding time, 2.0% porosity) showed a fracture toughness of 4.93 MPa·m0.5, an elastic modulus of 210 GPa, a fracture energy of 57 J·m-2, and a flexural strength of 170 MPa, in very good agreement with values reported by the literature. An increase of 37-177% in the fracture energy due to 21 vol% LZSA addition in the alumina was achieved for the range of grain size obtained in this work. Even though the final composition included a glassy component, the observed mechanical properties confirmed the effectiveness of the crystalline phases that were formed from LZSA glass-ceramic in reducing the propagation of cracks. The results showed that the addition of the LZSA glass-ceramic improved the mechanical properties of alumina.ABM, ABC, ABPol2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000100108Materials Research v.21 n.1 2018reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0012info:eu-repo/semantics/openAccessMontedo,Oscar Rubem KleguesMilak,Pâmela CabreiraFaller,Cristian ArnaldoPeterson,MichaelNoni Junior,Agenor Deeng2018-05-11T00:00:00Zoai:scielo:S1516-14392018000100108Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-05-11T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
title |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
spellingShingle |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior Montedo,Oscar Rubem Klegues Alumina LZSA glass-ceramic composites mechanical behavior |
title_short |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
title_full |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
title_fullStr |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
title_full_unstemmed |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
title_sort |
Effect of LZSA Glass-Ceramic Addition on Pressureless Sintered Alumina. Part II: Mechanical Behavior |
author |
Montedo,Oscar Rubem Klegues |
author_facet |
Montedo,Oscar Rubem Klegues Milak,Pâmela Cabreira Faller,Cristian Arnaldo Peterson,Michael Noni Junior,Agenor De |
author_role |
author |
author2 |
Milak,Pâmela Cabreira Faller,Cristian Arnaldo Peterson,Michael Noni Junior,Agenor De |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Montedo,Oscar Rubem Klegues Milak,Pâmela Cabreira Faller,Cristian Arnaldo Peterson,Michael Noni Junior,Agenor De |
dc.subject.por.fl_str_mv |
Alumina LZSA glass-ceramic composites mechanical behavior |
topic |
Alumina LZSA glass-ceramic composites mechanical behavior |
description |
This work aims to evaluate the influence of a Li2O-ZrO2-SiO2-Al2O3 (LZSA) glass-ceramic on the mechanical behavior of alumina. Composites were prepared from alumina with three different particle sizes and 7 to 21 vol% of an LZSA glass-ceramic composition (11.6Li2O-16.8ZrO2-68.2SiO2-3.4Al2O3,). Specimens were obtained by uniaxial pressing. The optimum sintering temperature and holding time were found to be different for each composite. Structural characterization (bulk density and crystalline phases); mechanical characterization (flexure strength, elastic modulus, fracture toughness, and fracture energy); and microstructural analyses were carried out. Fine-grained alumina-based composite containing 21 vol% of glass-ceramic (1470 ºC and 3 h holding time, 2.0% porosity) showed a fracture toughness of 4.93 MPa·m0.5, an elastic modulus of 210 GPa, a fracture energy of 57 J·m-2, and a flexural strength of 170 MPa, in very good agreement with values reported by the literature. An increase of 37-177% in the fracture energy due to 21 vol% LZSA addition in the alumina was achieved for the range of grain size obtained in this work. Even though the final composition included a glassy component, the observed mechanical properties confirmed the effectiveness of the crystalline phases that were formed from LZSA glass-ceramic in reducing the propagation of cracks. The results showed that the addition of the LZSA glass-ceramic improved the mechanical properties of alumina. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000100108 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000100108 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2017-0012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.21 n.1 2018 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212672112427008 |