Oxidation and erosion-oxidation behavior of steels
Autor(a) principal: | |
---|---|
Data de Publicação: | 2008 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000100008 |
Resumo: | The high temperature oxidation and erosion-oxidation (E-O) behavior of steels AISI 1020, 304, 310, and 410 were determined. These steels were selected to evaluate the effect of chromium content on its E-O resistance. The oxidation behavior was determined in a thermogravimetric analyzer. A test rig in which a specimen assembly was rotated through a fluidized bed of erodent particles was used to determine the E-O behavior. Alumina powder (200 µm) was used as the erodent. The E-O tests were carried out in the temperature range 25-600 °C, with average particle impact velocities of 3.5 and 15 ms-1 and impact angle of 90°. The oxidation resistance of the steels increased with chromium content. The E-O behavior of the steels was determined as wastage. The E-O wastage of the steels exposed to particle impact at low velocity was low but increased with temperature above 300 °C. The E-O wastage of the different steels exposed to particle impact at high velocity was quite similar. The wastage increased with increase in temperature above 500 °C. The increases in E-O wastage of the steels observed at temperatures above 300, 400 or 500 °C, depending on the steel, were due mainly to a transition in the dominant wastage process, from 'erosion' to 'erosion-oxidation'. |
id |
ABMABCABPOL-1_bd08ed862534edac0757ddd582ad78a8 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392008000100008 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Oxidation and erosion-oxidation behavior of steelsoxidationerosionerosion-oxidationwastagesteelsThe high temperature oxidation and erosion-oxidation (E-O) behavior of steels AISI 1020, 304, 310, and 410 were determined. These steels were selected to evaluate the effect of chromium content on its E-O resistance. The oxidation behavior was determined in a thermogravimetric analyzer. A test rig in which a specimen assembly was rotated through a fluidized bed of erodent particles was used to determine the E-O behavior. Alumina powder (200 µm) was used as the erodent. The E-O tests were carried out in the temperature range 25-600 °C, with average particle impact velocities of 3.5 and 15 ms-1 and impact angle of 90°. The oxidation resistance of the steels increased with chromium content. The E-O behavior of the steels was determined as wastage. The E-O wastage of the steels exposed to particle impact at low velocity was low but increased with temperature above 300 °C. The E-O wastage of the different steels exposed to particle impact at high velocity was quite similar. The wastage increased with increase in temperature above 500 °C. The increases in E-O wastage of the steels observed at temperatures above 300, 400 or 500 °C, depending on the steel, were due mainly to a transition in the dominant wastage process, from 'erosion' to 'erosion-oxidation'.ABM, ABC, ABPol2008-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000100008Materials Research v.11 n.1 2008reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392008000100008info:eu-repo/semantics/openAccessFernandes,Stela Maria de CarvalhoCorrea,Olandir VercinoRamanathan,Lalgudi Venkataramaneng2008-04-28T00:00:00Zoai:scielo:S1516-14392008000100008Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2008-04-28T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Oxidation and erosion-oxidation behavior of steels |
title |
Oxidation and erosion-oxidation behavior of steels |
spellingShingle |
Oxidation and erosion-oxidation behavior of steels Fernandes,Stela Maria de Carvalho oxidation erosion erosion-oxidation wastage steels |
title_short |
Oxidation and erosion-oxidation behavior of steels |
title_full |
Oxidation and erosion-oxidation behavior of steels |
title_fullStr |
Oxidation and erosion-oxidation behavior of steels |
title_full_unstemmed |
Oxidation and erosion-oxidation behavior of steels |
title_sort |
Oxidation and erosion-oxidation behavior of steels |
author |
Fernandes,Stela Maria de Carvalho |
author_facet |
Fernandes,Stela Maria de Carvalho Correa,Olandir Vercino Ramanathan,Lalgudi Venkataraman |
author_role |
author |
author2 |
Correa,Olandir Vercino Ramanathan,Lalgudi Venkataraman |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Fernandes,Stela Maria de Carvalho Correa,Olandir Vercino Ramanathan,Lalgudi Venkataraman |
dc.subject.por.fl_str_mv |
oxidation erosion erosion-oxidation wastage steels |
topic |
oxidation erosion erosion-oxidation wastage steels |
description |
The high temperature oxidation and erosion-oxidation (E-O) behavior of steels AISI 1020, 304, 310, and 410 were determined. These steels were selected to evaluate the effect of chromium content on its E-O resistance. The oxidation behavior was determined in a thermogravimetric analyzer. A test rig in which a specimen assembly was rotated through a fluidized bed of erodent particles was used to determine the E-O behavior. Alumina powder (200 µm) was used as the erodent. The E-O tests were carried out in the temperature range 25-600 °C, with average particle impact velocities of 3.5 and 15 ms-1 and impact angle of 90°. The oxidation resistance of the steels increased with chromium content. The E-O behavior of the steels was determined as wastage. The E-O wastage of the steels exposed to particle impact at low velocity was low but increased with temperature above 300 °C. The E-O wastage of the different steels exposed to particle impact at high velocity was quite similar. The wastage increased with increase in temperature above 500 °C. The increases in E-O wastage of the steels observed at temperatures above 300, 400 or 500 °C, depending on the steel, were due mainly to a transition in the dominant wastage process, from 'erosion' to 'erosion-oxidation'. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000100008 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392008000100008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392008000100008 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.11 n.1 2008 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212658868912128 |