Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000500239 |
Resumo: | An approach following the null-matrix, Ti/Zr ratio of 2.08, for neutron diffraction was used to calculate the glass formation in Cu-Ti-(Hf,Zr) alloys. The Cu55Zr14.6Ti30.4, Cu61.48Hf18.52Zr6.48Ti13.52, Cu58.1Hf16.9Zr8.1Ti16.9 and Cu52.46Hf14.2Zr10.8Ti22.54 compositions (at. %), were calculated and prepared by argon arc melting. Copper die suction casting was employed to produce conical shaped samples with diameters decreasing from 8 mm to 1 mm. X-ray diffraction and Neutron Diffraction were used to characterize the alloys with the aim of obtaining the critical glassy diameter, dc, of the alloys. The results showed the composition with the biggest dc was the Cu61.48Hf18.52Zr6.48Ti13.52 alloy, with dc = 6 mm. Thermal parameters were obtained by differential scanning calorimetry and the maximum values for glass transition temperature, Tg, (747 K), crystallization temperature, Tx, (772 K), solidus temperature, Tm, (1152 K) and liquidus temperature, Tl, (1230 K) corresponded to the Cu61.48Hf18.52Zr6.48Ti13.52 composition. The results also showed that the parameters obtained from thermal analysis did not correlate with the GFA obtained. However, a good correlation of GFA and dc was found by means of the topological model, where the highest % packing efficiency (53.57 %) was found for the Cu61.48Hf18.52Zr6.48Ti13.52 alloy, which also showed the highest dc value with 6 mm. |
id |
ABMABCABPOL-1_ce8a445beb4e647c52d032f8383582d4 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392019000500239 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloysmetallic glassesrapid-solidificationcalorimetryneutron diffractionX-ray diffractiontopological modelAn approach following the null-matrix, Ti/Zr ratio of 2.08, for neutron diffraction was used to calculate the glass formation in Cu-Ti-(Hf,Zr) alloys. The Cu55Zr14.6Ti30.4, Cu61.48Hf18.52Zr6.48Ti13.52, Cu58.1Hf16.9Zr8.1Ti16.9 and Cu52.46Hf14.2Zr10.8Ti22.54 compositions (at. %), were calculated and prepared by argon arc melting. Copper die suction casting was employed to produce conical shaped samples with diameters decreasing from 8 mm to 1 mm. X-ray diffraction and Neutron Diffraction were used to characterize the alloys with the aim of obtaining the critical glassy diameter, dc, of the alloys. The results showed the composition with the biggest dc was the Cu61.48Hf18.52Zr6.48Ti13.52 alloy, with dc = 6 mm. Thermal parameters were obtained by differential scanning calorimetry and the maximum values for glass transition temperature, Tg, (747 K), crystallization temperature, Tx, (772 K), solidus temperature, Tm, (1152 K) and liquidus temperature, Tl, (1230 K) corresponded to the Cu61.48Hf18.52Zr6.48Ti13.52 composition. The results also showed that the parameters obtained from thermal analysis did not correlate with the GFA obtained. However, a good correlation of GFA and dc was found by means of the topological model, where the highest % packing efficiency (53.57 %) was found for the Cu61.48Hf18.52Zr6.48Ti13.52 alloy, which also showed the highest dc value with 6 mm.ABM, ABC, ABPol2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000500239Materials Research v.22 n.5 2019reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2019-0404info:eu-repo/semantics/openAccessLozada-Flores,OctavioFigueroa,Ignacio Alejandroeng2020-01-10T00:00:00Zoai:scielo:S1516-14392019000500239Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2020-01-10T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
title |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
spellingShingle |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys Lozada-Flores,Octavio metallic glasses rapid-solidification calorimetry neutron diffraction X-ray diffraction topological model |
title_short |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
title_full |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
title_fullStr |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
title_full_unstemmed |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
title_sort |
Glass Formation of Null-Matrix Cu-Hf-(Zr, Ti) Alloys |
author |
Lozada-Flores,Octavio |
author_facet |
Lozada-Flores,Octavio Figueroa,Ignacio Alejandro |
author_role |
author |
author2 |
Figueroa,Ignacio Alejandro |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Lozada-Flores,Octavio Figueroa,Ignacio Alejandro |
dc.subject.por.fl_str_mv |
metallic glasses rapid-solidification calorimetry neutron diffraction X-ray diffraction topological model |
topic |
metallic glasses rapid-solidification calorimetry neutron diffraction X-ray diffraction topological model |
description |
An approach following the null-matrix, Ti/Zr ratio of 2.08, for neutron diffraction was used to calculate the glass formation in Cu-Ti-(Hf,Zr) alloys. The Cu55Zr14.6Ti30.4, Cu61.48Hf18.52Zr6.48Ti13.52, Cu58.1Hf16.9Zr8.1Ti16.9 and Cu52.46Hf14.2Zr10.8Ti22.54 compositions (at. %), were calculated and prepared by argon arc melting. Copper die suction casting was employed to produce conical shaped samples with diameters decreasing from 8 mm to 1 mm. X-ray diffraction and Neutron Diffraction were used to characterize the alloys with the aim of obtaining the critical glassy diameter, dc, of the alloys. The results showed the composition with the biggest dc was the Cu61.48Hf18.52Zr6.48Ti13.52 alloy, with dc = 6 mm. Thermal parameters were obtained by differential scanning calorimetry and the maximum values for glass transition temperature, Tg, (747 K), crystallization temperature, Tx, (772 K), solidus temperature, Tm, (1152 K) and liquidus temperature, Tl, (1230 K) corresponded to the Cu61.48Hf18.52Zr6.48Ti13.52 composition. The results also showed that the parameters obtained from thermal analysis did not correlate with the GFA obtained. However, a good correlation of GFA and dc was found by means of the topological model, where the highest % packing efficiency (53.57 %) was found for the Cu61.48Hf18.52Zr6.48Ti13.52 alloy, which also showed the highest dc value with 6 mm. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000500239 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392019000500239 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2019-0404 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.22 n.5 2019 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212675430121472 |