Ag ion decoration for surface modifications of multi-walled carbon nanotubes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300021 |
Resumo: | The production of high performance metal matrix composites depends on a proper design of the surface of the reinforcing phase, ensuring a good contact with a metal phase. In the present work, two Ag decorating procedures to modify the surface of multi-walled carbon nanotubes (MWCNT) were evaluated for further production of aluminum matrix composites. The procedures consisted in a two steps route based on acid oxidation of carbon nanotubes (CNT) followed by suspension in an Ag ion solution; and a single step route, based on the effect of n-dimethylformamide (DMF) as an activation agent of CNT surface, in presence of Ag ions. Transmission and scanning-transmission electron microscopy, Raman and Fourier-transformed infrared spectroscopy were employed in order to characterize the results. The two steps route resulted in Ag nano-particles homogeneously deposited over the CNT surface. The mechanism for the deposition is based on carboxyl and probably hydroxyl functional groups formed in the first step, acting as nucleation sites for Ag precipitation in the second step. The single step route resulted in the formation of sub-micrometric Ag particles heterogeneously mixed to CNT bundles. |
id |
ABMABCABPOL-1_d6240da27fa7de80a97e27edadde2fb1 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392014000300021 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Ag ion decoration for surface modifications of multi-walled carbon nanotubescarbon nanotubesAg decorationacid refluxingsurface activationThe production of high performance metal matrix composites depends on a proper design of the surface of the reinforcing phase, ensuring a good contact with a metal phase. In the present work, two Ag decorating procedures to modify the surface of multi-walled carbon nanotubes (MWCNT) were evaluated for further production of aluminum matrix composites. The procedures consisted in a two steps route based on acid oxidation of carbon nanotubes (CNT) followed by suspension in an Ag ion solution; and a single step route, based on the effect of n-dimethylformamide (DMF) as an activation agent of CNT surface, in presence of Ag ions. Transmission and scanning-transmission electron microscopy, Raman and Fourier-transformed infrared spectroscopy were employed in order to characterize the results. The two steps route resulted in Ag nano-particles homogeneously deposited over the CNT surface. The mechanism for the deposition is based on carboxyl and probably hydroxyl functional groups formed in the first step, acting as nucleation sites for Ag precipitation in the second step. The single step route resulted in the formation of sub-micrometric Ag particles heterogeneously mixed to CNT bundles.ABM, ABC, ABPol2014-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300021Materials Research v.17 n.3 2014reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392014005000026info:eu-repo/semantics/openAccessTravessa,Dilermando N.Silva,Fábio S. daCristovan,Fernando H.Jorge Jr.,Alberto M.Cardoso,Kátia Reginaeng2014-06-18T00:00:00Zoai:scielo:S1516-14392014000300021Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2014-06-18T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
title |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
spellingShingle |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes Travessa,Dilermando N. carbon nanotubes Ag decoration acid refluxing surface activation |
title_short |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
title_full |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
title_fullStr |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
title_full_unstemmed |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
title_sort |
Ag ion decoration for surface modifications of multi-walled carbon nanotubes |
author |
Travessa,Dilermando N. |
author_facet |
Travessa,Dilermando N. Silva,Fábio S. da Cristovan,Fernando H. Jorge Jr.,Alberto M. Cardoso,Kátia Regina |
author_role |
author |
author2 |
Silva,Fábio S. da Cristovan,Fernando H. Jorge Jr.,Alberto M. Cardoso,Kátia Regina |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Travessa,Dilermando N. Silva,Fábio S. da Cristovan,Fernando H. Jorge Jr.,Alberto M. Cardoso,Kátia Regina |
dc.subject.por.fl_str_mv |
carbon nanotubes Ag decoration acid refluxing surface activation |
topic |
carbon nanotubes Ag decoration acid refluxing surface activation |
description |
The production of high performance metal matrix composites depends on a proper design of the surface of the reinforcing phase, ensuring a good contact with a metal phase. In the present work, two Ag decorating procedures to modify the surface of multi-walled carbon nanotubes (MWCNT) were evaluated for further production of aluminum matrix composites. The procedures consisted in a two steps route based on acid oxidation of carbon nanotubes (CNT) followed by suspension in an Ag ion solution; and a single step route, based on the effect of n-dimethylformamide (DMF) as an activation agent of CNT surface, in presence of Ag ions. Transmission and scanning-transmission electron microscopy, Raman and Fourier-transformed infrared spectroscopy were employed in order to characterize the results. The two steps route resulted in Ag nano-particles homogeneously deposited over the CNT surface. The mechanism for the deposition is based on carboxyl and probably hydroxyl functional groups formed in the first step, acting as nucleation sites for Ag precipitation in the second step. The single step route resulted in the formation of sub-micrometric Ag particles heterogeneously mixed to CNT bundles. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300021 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392014005000026 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.17 n.3 2014 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212664669634560 |