Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800549 |
Resumo: | In this work, ceramic shell (mullite source), an industrial solid waste from the lost-wax casting process, after crushing and milling steps, was used and evaluated as an alternative raw material source for the production of cellular ceramics for high temperature applications (> 1400 °C). The obtained ceramic shell powder, with particle size distribution (d50 < 2 µm) suitable for the production of ceramic foams, was characterized from the point of view of their physical, chemical, morphological and crystallographic properties. Samples were prepared and obtained by direct foaming and gelcasting routes, dried at room temperature and then fired in two steps (650 °C/2 h and 1550 °C/2 h), and cooled in the furnace to room temperature. The effects of solids loading (35 and 42 vol. %) and stirring velocity (500 and 2000 rpm) on the cellular structure (pore size distribution and porosity) and mechanical properties of the produced ceramic shell foam samples were evaluated. The results showed that it is possible to obtain ceramic foams based on mullite-zirconite, with pore sizes between 100 and 900 µm, porosities up to 77% and compressive strength varying from 3 to 20 MPa. |
id |
ABMABCABPOL-1_dec7854888d6df86d24bc6e1e378da37 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000800549 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Cellular Ceramics Produced from Ceramic Shell: Processing and CharacterizationCellular ceramicsceramic shellwastesporous materialsIn this work, ceramic shell (mullite source), an industrial solid waste from the lost-wax casting process, after crushing and milling steps, was used and evaluated as an alternative raw material source for the production of cellular ceramics for high temperature applications (> 1400 °C). The obtained ceramic shell powder, with particle size distribution (d50 < 2 µm) suitable for the production of ceramic foams, was characterized from the point of view of their physical, chemical, morphological and crystallographic properties. Samples were prepared and obtained by direct foaming and gelcasting routes, dried at room temperature and then fired in two steps (650 °C/2 h and 1550 °C/2 h), and cooled in the furnace to room temperature. The effects of solids loading (35 and 42 vol. %) and stirring velocity (500 and 2000 rpm) on the cellular structure (pore size distribution and porosity) and mechanical properties of the produced ceramic shell foam samples were evaluated. The results showed that it is possible to obtain ceramic foams based on mullite-zirconite, with pore sizes between 100 and 900 µm, porosities up to 77% and compressive strength varying from 3 to 20 MPa.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800549Materials Research v.20 suppl.2 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2016-1093info:eu-repo/semantics/openAccessStochero,Naiane PaivaMoraes,Elisângela Guzi deOliveira,Antonio Pedro Novaes deeng2018-04-12T00:00:00Zoai:scielo:S1516-14392017000800549Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-04-12T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
title |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
spellingShingle |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization Stochero,Naiane Paiva Cellular ceramics ceramic shell wastes porous materials |
title_short |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
title_full |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
title_fullStr |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
title_full_unstemmed |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
title_sort |
Cellular Ceramics Produced from Ceramic Shell: Processing and Characterization |
author |
Stochero,Naiane Paiva |
author_facet |
Stochero,Naiane Paiva Moraes,Elisângela Guzi de Oliveira,Antonio Pedro Novaes de |
author_role |
author |
author2 |
Moraes,Elisângela Guzi de Oliveira,Antonio Pedro Novaes de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Stochero,Naiane Paiva Moraes,Elisângela Guzi de Oliveira,Antonio Pedro Novaes de |
dc.subject.por.fl_str_mv |
Cellular ceramics ceramic shell wastes porous materials |
topic |
Cellular ceramics ceramic shell wastes porous materials |
description |
In this work, ceramic shell (mullite source), an industrial solid waste from the lost-wax casting process, after crushing and milling steps, was used and evaluated as an alternative raw material source for the production of cellular ceramics for high temperature applications (> 1400 °C). The obtained ceramic shell powder, with particle size distribution (d50 < 2 µm) suitable for the production of ceramic foams, was characterized from the point of view of their physical, chemical, morphological and crystallographic properties. Samples were prepared and obtained by direct foaming and gelcasting routes, dried at room temperature and then fired in two steps (650 °C/2 h and 1550 °C/2 h), and cooled in the furnace to room temperature. The effects of solids loading (35 and 42 vol. %) and stirring velocity (500 and 2000 rpm) on the cellular structure (pore size distribution and porosity) and mechanical properties of the produced ceramic shell foam samples were evaluated. The results showed that it is possible to obtain ceramic foams based on mullite-zirconite, with pore sizes between 100 and 900 µm, porosities up to 77% and compressive strength varying from 3 to 20 MPa. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800549 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800549 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2016-1093 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 suppl.2 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212671660490752 |