Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances

Detalhes bibliográficos
Autor(a) principal: Siqueira,Marcelo de Oliveira
Data de Publicação: 2020
Outros Autores: Carvalho,Eduardo Atem de
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000600226
Resumo: This work aims to evaluate the capability of the theory of critical distances (TCD) to predict the static failure of U-notched AISI 420 martensitic stainless steel specimens with different geometric features under pure bending loading. Theoretical estimates of the stress intensity factor during fracture onset were calculated according to the line (LM) and point methods (PM), which consider the characteristic length L, inherent strength σ0, and notch tip radius ρ. Initially, L and σ0 were determined on the basis of the material’s properties (i.e., fracture toughness KIc and ultimate tensile strength σu,t), resulting in imprecise estimates. Conversely, L and σ0 determined using the appropriate analysis of linear–elastic stress fields ahead of notches with different sharpness provided highly accurate predictions. The microscopic study of fractured specimens ensured better comprehension of the results. Moreover, the accurate values of L and σ0 were used to predict the failure of V-notched specimens.
id ABMABCABPOL-1_f6744b4fadb67484e3f906a47bddb663
oai_identifier_str oai:scielo:S1516-14392020000600226
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical DistancesTheory of critical distancesAISI 420U-notchV-notchSmall-scale yieldingThis work aims to evaluate the capability of the theory of critical distances (TCD) to predict the static failure of U-notched AISI 420 martensitic stainless steel specimens with different geometric features under pure bending loading. Theoretical estimates of the stress intensity factor during fracture onset were calculated according to the line (LM) and point methods (PM), which consider the characteristic length L, inherent strength σ0, and notch tip radius ρ. Initially, L and σ0 were determined on the basis of the material’s properties (i.e., fracture toughness KIc and ultimate tensile strength σu,t), resulting in imprecise estimates. Conversely, L and σ0 determined using the appropriate analysis of linear–elastic stress fields ahead of notches with different sharpness provided highly accurate predictions. The microscopic study of fractured specimens ensured better comprehension of the results. Moreover, the accurate values of L and σ0 were used to predict the failure of V-notched specimens.ABM, ABC, ABPol2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000600226Materials Research v.23 n.6 2020reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2020-0494info:eu-repo/semantics/openAccessSiqueira,Marcelo de OliveiraCarvalho,Eduardo Atem deeng2021-02-22T00:00:00Zoai:scielo:S1516-14392020000600226Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2021-02-22T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
title Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
spellingShingle Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
Siqueira,Marcelo de Oliveira
Theory of critical distances
AISI 420
U-notch
V-notch
Small-scale yielding
title_short Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
title_full Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
title_fullStr Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
title_full_unstemmed Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
title_sort Failure Prediction of AISI 420 Martensitic Stainless Steel Using the Theory of Critical Distances
author Siqueira,Marcelo de Oliveira
author_facet Siqueira,Marcelo de Oliveira
Carvalho,Eduardo Atem de
author_role author
author2 Carvalho,Eduardo Atem de
author2_role author
dc.contributor.author.fl_str_mv Siqueira,Marcelo de Oliveira
Carvalho,Eduardo Atem de
dc.subject.por.fl_str_mv Theory of critical distances
AISI 420
U-notch
V-notch
Small-scale yielding
topic Theory of critical distances
AISI 420
U-notch
V-notch
Small-scale yielding
description This work aims to evaluate the capability of the theory of critical distances (TCD) to predict the static failure of U-notched AISI 420 martensitic stainless steel specimens with different geometric features under pure bending loading. Theoretical estimates of the stress intensity factor during fracture onset were calculated according to the line (LM) and point methods (PM), which consider the characteristic length L, inherent strength σ0, and notch tip radius ρ. Initially, L and σ0 were determined on the basis of the material’s properties (i.e., fracture toughness KIc and ultimate tensile strength σu,t), resulting in imprecise estimates. Conversely, L and σ0 determined using the appropriate analysis of linear–elastic stress fields ahead of notches with different sharpness provided highly accurate predictions. The microscopic study of fractured specimens ensured better comprehension of the results. Moreover, the accurate values of L and σ0 were used to predict the failure of V-notched specimens.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000600226
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392020000600226
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2020-0494
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.23 n.6 2020
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212678054707200