Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Otorhinolaryngology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942018000100040 |
Resumo: | Abstract Introduction To provide clinical information and diagnosis in mouth breathers with transverse maxillary deficiency with posterior crossbite, numerous exams can be performed; however, the correlation among these exams remains unclear. Objective To evaluate the correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Methods A cross-sectional study was conducted in 30 mouth breathers with transverse maxillary deficiency (7-13 y.o.) patients with posterior crossbite. The examinations assessed: (i) acoustic rhinometry: nasal volumes (0-5 cm and 2-5 cm) and minimum cross-sectional areas 1 and 2 of nasal cavity; (ii) computed rhinomanometry: flow and average inspiratory and expiratory resistance; (iii) cone-beam computed tomography: coronal section on the head of inferior turbinate (Widths 1 and 2), middle turbinate (Widths 3 and 4) and maxilla levels (Width 5). Acoustic rhinometry and computed rhinomanometry were evaluated before and after administration of vasoconstrictor. Results were compared by Spearman's correlation and Mann-Whitney tests (α = 0.05). Results Positive correlations were observed between: (i) flow evaluated before administration of vasoconstrictor and Width 4 (Rho = 0.380) and Width 5 (Rho = 0.371); (ii) Width 2 and minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.380); (iii) flow evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = 0.421), nasal volumes of 2-5 cm (Rho = 0.393) and minimum cross-sectional areas 1 (Rho = 0.375); (iv) Width 4 and nasal volumes of 0-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), nasal volumes of 2-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.410) and minimum cross-sectional areas 1 after administration of vasoconstrictor (Rho = 0.426); (v) Width 5 and Width 1 (Rho = 0.542), Width 2 (Rho = 0.411), and Width 4 (Rho = 0.429). Negative correlations were observed between: (i) Width 4 and average inspiratory resistance (Rho = −0.385); (ii) average inspiratory resistance evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = −0.382), and average expiratory resistance evaluated before administration of vasoconstrictor and minimum cross-sectional areas 1 (Rho = −0.362). Conclusion There were correlations between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. |
id |
ABORL-F-1_e26de1d2a2021f14b74bbc20fd80ea87 |
---|---|
oai_identifier_str |
oai:scielo:S1808-86942018000100040 |
network_acronym_str |
ABORL-F-1 |
network_name_str |
Brazilian Journal of Otorhinolaryngology |
repository_id_str |
|
spelling |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiencyMinimum cross-sectional areasNasal cavityRespiratory flowAverage nasal resistanceAbstract Introduction To provide clinical information and diagnosis in mouth breathers with transverse maxillary deficiency with posterior crossbite, numerous exams can be performed; however, the correlation among these exams remains unclear. Objective To evaluate the correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Methods A cross-sectional study was conducted in 30 mouth breathers with transverse maxillary deficiency (7-13 y.o.) patients with posterior crossbite. The examinations assessed: (i) acoustic rhinometry: nasal volumes (0-5 cm and 2-5 cm) and minimum cross-sectional areas 1 and 2 of nasal cavity; (ii) computed rhinomanometry: flow and average inspiratory and expiratory resistance; (iii) cone-beam computed tomography: coronal section on the head of inferior turbinate (Widths 1 and 2), middle turbinate (Widths 3 and 4) and maxilla levels (Width 5). Acoustic rhinometry and computed rhinomanometry were evaluated before and after administration of vasoconstrictor. Results were compared by Spearman's correlation and Mann-Whitney tests (α = 0.05). Results Positive correlations were observed between: (i) flow evaluated before administration of vasoconstrictor and Width 4 (Rho = 0.380) and Width 5 (Rho = 0.371); (ii) Width 2 and minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.380); (iii) flow evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = 0.421), nasal volumes of 2-5 cm (Rho = 0.393) and minimum cross-sectional areas 1 (Rho = 0.375); (iv) Width 4 and nasal volumes of 0-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), nasal volumes of 2-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.410) and minimum cross-sectional areas 1 after administration of vasoconstrictor (Rho = 0.426); (v) Width 5 and Width 1 (Rho = 0.542), Width 2 (Rho = 0.411), and Width 4 (Rho = 0.429). Negative correlations were observed between: (i) Width 4 and average inspiratory resistance (Rho = −0.385); (ii) average inspiratory resistance evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = −0.382), and average expiratory resistance evaluated before administration of vasoconstrictor and minimum cross-sectional areas 1 (Rho = −0.362). Conclusion There were correlations between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency.Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial.2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942018000100040Brazilian Journal of Otorhinolaryngology v.84 n.1 2018reponame:Brazilian Journal of Otorhinolaryngologyinstname:Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)instacron:ABORL-CCF10.1016/j.bjorl.2016.10.015info:eu-repo/semantics/openAccessSakai,Raquel Harumi Uejima SattoMarson,Fernando Augusto LimaSakuma,Emerson Taro InoueRibeiro,José DirceuSakano,Euláliaeng2018-02-16T00:00:00Zoai:scielo:S1808-86942018000100040Revistahttp://www.bjorl.org.br/https://old.scielo.br/oai/scielo-oai.phprevista@aborlccf.org.br||revista@aborlccf.org.br1808-86861808-8686opendoar:2018-02-16T00:00Brazilian Journal of Otorhinolaryngology - Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)false |
dc.title.none.fl_str_mv |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
title |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
spellingShingle |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency Sakai,Raquel Harumi Uejima Satto Minimum cross-sectional areas Nasal cavity Respiratory flow Average nasal resistance |
title_short |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
title_full |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
title_fullStr |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
title_full_unstemmed |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
title_sort |
Correlation between acoustic rhinometry, computed rhinomanometry and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency |
author |
Sakai,Raquel Harumi Uejima Satto |
author_facet |
Sakai,Raquel Harumi Uejima Satto Marson,Fernando Augusto Lima Sakuma,Emerson Taro Inoue Ribeiro,José Dirceu Sakano,Eulália |
author_role |
author |
author2 |
Marson,Fernando Augusto Lima Sakuma,Emerson Taro Inoue Ribeiro,José Dirceu Sakano,Eulália |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Sakai,Raquel Harumi Uejima Satto Marson,Fernando Augusto Lima Sakuma,Emerson Taro Inoue Ribeiro,José Dirceu Sakano,Eulália |
dc.subject.por.fl_str_mv |
Minimum cross-sectional areas Nasal cavity Respiratory flow Average nasal resistance |
topic |
Minimum cross-sectional areas Nasal cavity Respiratory flow Average nasal resistance |
description |
Abstract Introduction To provide clinical information and diagnosis in mouth breathers with transverse maxillary deficiency with posterior crossbite, numerous exams can be performed; however, the correlation among these exams remains unclear. Objective To evaluate the correlation between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. Methods A cross-sectional study was conducted in 30 mouth breathers with transverse maxillary deficiency (7-13 y.o.) patients with posterior crossbite. The examinations assessed: (i) acoustic rhinometry: nasal volumes (0-5 cm and 2-5 cm) and minimum cross-sectional areas 1 and 2 of nasal cavity; (ii) computed rhinomanometry: flow and average inspiratory and expiratory resistance; (iii) cone-beam computed tomography: coronal section on the head of inferior turbinate (Widths 1 and 2), middle turbinate (Widths 3 and 4) and maxilla levels (Width 5). Acoustic rhinometry and computed rhinomanometry were evaluated before and after administration of vasoconstrictor. Results were compared by Spearman's correlation and Mann-Whitney tests (α = 0.05). Results Positive correlations were observed between: (i) flow evaluated before administration of vasoconstrictor and Width 4 (Rho = 0.380) and Width 5 (Rho = 0.371); (ii) Width 2 and minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.380); (iii) flow evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = 0.421), nasal volumes of 2-5 cm (Rho = 0.393) and minimum cross-sectional areas 1 (Rho = 0.375); (iv) Width 4 and nasal volumes of 0-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), nasal volumes of 2-5 cm evaluated before administration of vasoconstrictor (Rho = 0.376), minimum cross-sectional areas 1 evaluated before administration of vasoconstrictor (Rho = 0.410) and minimum cross-sectional areas 1 after administration of vasoconstrictor (Rho = 0.426); (v) Width 5 and Width 1 (Rho = 0.542), Width 2 (Rho = 0.411), and Width 4 (Rho = 0.429). Negative correlations were observed between: (i) Width 4 and average inspiratory resistance (Rho = −0.385); (ii) average inspiratory resistance evaluated before administration of vasoconstrictor and nasal volumes of 0-5 cm (Rho = −0.382), and average expiratory resistance evaluated before administration of vasoconstrictor and minimum cross-sectional areas 1 (Rho = −0.362). Conclusion There were correlations between acoustic rhinometry, computed rhinomanometry, and cone-beam computed tomography in mouth breathers with transverse maxillary deficiency. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942018000100040 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942018000100040 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.bjorl.2016.10.015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. |
publisher.none.fl_str_mv |
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. |
dc.source.none.fl_str_mv |
Brazilian Journal of Otorhinolaryngology v.84 n.1 2018 reponame:Brazilian Journal of Otorhinolaryngology instname:Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF) instacron:ABORL-CCF |
instname_str |
Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF) |
instacron_str |
ABORL-CCF |
institution |
ABORL-CCF |
reponame_str |
Brazilian Journal of Otorhinolaryngology |
collection |
Brazilian Journal of Otorhinolaryngology |
repository.name.fl_str_mv |
Brazilian Journal of Otorhinolaryngology - Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF) |
repository.mail.fl_str_mv |
revista@aborlccf.org.br||revista@aborlccf.org.br |
_version_ |
1754575992805916672 |