Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility

Detalhes bibliográficos
Autor(a) principal: Williams III,D. S. Blaise
Data de Publicação: 2015
Outros Autores: Welch,Lee M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Physical Therapy
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-35552015000500421
Resumo: ABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05).Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.
id ABRA-FT-1_cad2fc1c5a121430b7a9bc6b785ff00b
oai_identifier_str oai:scielo:S1413-35552015000500421
network_acronym_str ABRA-FT-1
network_name_str Brazilian Journal of Physical Therapy
repository_id_str
spelling Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibilitybiomechanicsgenderhamstringsrunningABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05).Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia 2015-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-35552015000500421Brazilian Journal of Physical Therapy v.19 n.5 2015reponame:Brazilian Journal of Physical Therapyinstname:Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia (ABRAPG-FT)instacron:ABRAPG-FT10.1590/bjpt-rbf.2014.0123info:eu-repo/semantics/openAccessWilliams III,D. S. BlaiseWelch,Lee M.eng2015-10-29T00:00:00Zoai:scielo:S1413-35552015000500421Revistahttps://www.scielo.br/j/rbfis/https://old.scielo.br/oai/scielo-oai.phpcontato@rbf-bjpt.org.br||contato@rbf-bjpt.org.br1809-92461413-3555opendoar:2015-10-29T00:00Brazilian Journal of Physical Therapy - Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia (ABRAPG-FT)false
dc.title.none.fl_str_mv Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
title Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
spellingShingle Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
Williams III,D. S. Blaise
biomechanics
gender
hamstrings
running
title_short Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
title_full Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
title_fullStr Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
title_full_unstemmed Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
title_sort Male and female runners demonstrate different sagittal plane mechanics as a function of static hamstring flexibility
author Williams III,D. S. Blaise
author_facet Williams III,D. S. Blaise
Welch,Lee M.
author_role author
author2 Welch,Lee M.
author2_role author
dc.contributor.author.fl_str_mv Williams III,D. S. Blaise
Welch,Lee M.
dc.subject.por.fl_str_mv biomechanics
gender
hamstrings
running
topic biomechanics
gender
hamstrings
running
description ABSTRACTBackground:Injuries to runners are common. However, there are many potential contributing factors to injury. While lack of flexibility alone is commonly related to injury, there are clear differences in hamstring flexibility between males and females.Objective: To compare the effect of static hamstring length on sagittal plane mechanics between male and female runners.Method: Forty subjects (30.0±6.4 years) participated and were placed in one of 4 groups: flexible males (n=10), inflexible males (n=10), flexible females (n=10), and inflexible females (n=10). All subjects were free of injury at the time of data collection. Three-dimensional kinematics and kinetics were collected while subjects ran over ground across 2 force platforms. Sagittal plane joint angles and moments were calculated at the knee and hip and compared with a 2-way (sex X flexibility) ANOVA (α=0.05).Results: Males exhibited greater peak knee extension moment than females (M=2.80±0.47, F=2.48±0.52 Nm/kg*m, p=0.05) and inflexible runners exhibited greater peak knee extension moment than flexible runners (In=2.83±0.56, Fl=2.44±0.51 Nm/kg*m, p=0.01). For hip flexion at initial contact, a significant interaction existed (p<0.05). Flexible females (36.7±7.4º) exhibited more hip flexion than inflexible females (27.9±4.6º, p<0.01) and flexible males (30.1±9.5º, p<0.05). No differences existed for knee angle at initial contact, peak knee angle, peak hip angle, or peak hip moment.Conclusion: Hamstring flexibility results in different mechanical profiles in males and females. Flexibility in the hamstrings may result in decreased moments via active or passive tension. These differences may have implications for performance and injury in flexible female runners.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-35552015000500421
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-35552015000500421
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/bjpt-rbf.2014.0123
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia
publisher.none.fl_str_mv Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia
dc.source.none.fl_str_mv Brazilian Journal of Physical Therapy v.19 n.5 2015
reponame:Brazilian Journal of Physical Therapy
instname:Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia (ABRAPG-FT)
instacron:ABRAPG-FT
instname_str Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia (ABRAPG-FT)
instacron_str ABRAPG-FT
institution ABRAPG-FT
reponame_str Brazilian Journal of Physical Therapy
collection Brazilian Journal of Physical Therapy
repository.name.fl_str_mv Brazilian Journal of Physical Therapy - Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia (ABRAPG-FT)
repository.mail.fl_str_mv contato@rbf-bjpt.org.br||contato@rbf-bjpt.org.br
_version_ 1754575950429814784