Optimal architecture for artificial neural networks as pressure estimator

Detalhes bibliográficos
Autor(a) principal: Souza,Rui Gabriel Modesto de
Data de Publicação: 2021
Outros Autores: Brentan,Bruno Melo, Lima,Gustavo Meirelles
Tipo de documento: Artigo
Idioma: eng
Título da fonte: RBRH (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233
Resumo: ABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation.
id ABRH-1_48d443966205506aa00606fd6d599f01
oai_identifier_str oai:scielo:S2318-03312021000100233
network_acronym_str ABRH-1
network_name_str RBRH (Online)
repository_id_str
spelling Optimal architecture for artificial neural networks as pressure estimatorArtificial neural networkWater distribution networkData-driven modelABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation.Associação Brasileira de Recursos Hídricos2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233RBRH v.26 2021reponame:RBRH (Online)instname:Associação Brasileira de Recursos Hídricos (ABRH)instacron:ABRH10.1590/2318-0331.262120210100info:eu-repo/semantics/openAccessSouza,Rui Gabriel Modesto deBrentan,Bruno MeloLima,Gustavo Meirelleseng2021-11-18T00:00:00Zoai:scielo:S2318-03312021000100233Revistahttps://www.scielo.br/j/rbrh/https://old.scielo.br/oai/scielo-oai.php||rbrh@abrh.org.br2318-03311414-381Xopendoar:2021-11-18T00:00RBRH (Online) - Associação Brasileira de Recursos Hídricos (ABRH)false
dc.title.none.fl_str_mv Optimal architecture for artificial neural networks as pressure estimator
title Optimal architecture for artificial neural networks as pressure estimator
spellingShingle Optimal architecture for artificial neural networks as pressure estimator
Souza,Rui Gabriel Modesto de
Artificial neural network
Water distribution network
Data-driven model
title_short Optimal architecture for artificial neural networks as pressure estimator
title_full Optimal architecture for artificial neural networks as pressure estimator
title_fullStr Optimal architecture for artificial neural networks as pressure estimator
title_full_unstemmed Optimal architecture for artificial neural networks as pressure estimator
title_sort Optimal architecture for artificial neural networks as pressure estimator
author Souza,Rui Gabriel Modesto de
author_facet Souza,Rui Gabriel Modesto de
Brentan,Bruno Melo
Lima,Gustavo Meirelles
author_role author
author2 Brentan,Bruno Melo
Lima,Gustavo Meirelles
author2_role author
author
dc.contributor.author.fl_str_mv Souza,Rui Gabriel Modesto de
Brentan,Bruno Melo
Lima,Gustavo Meirelles
dc.subject.por.fl_str_mv Artificial neural network
Water distribution network
Data-driven model
topic Artificial neural network
Water distribution network
Data-driven model
description ABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/2318-0331.262120210100
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Recursos Hídricos
publisher.none.fl_str_mv Associação Brasileira de Recursos Hídricos
dc.source.none.fl_str_mv RBRH v.26 2021
reponame:RBRH (Online)
instname:Associação Brasileira de Recursos Hídricos (ABRH)
instacron:ABRH
instname_str Associação Brasileira de Recursos Hídricos (ABRH)
instacron_str ABRH
institution ABRH
reponame_str RBRH (Online)
collection RBRH (Online)
repository.name.fl_str_mv RBRH (Online) - Associação Brasileira de Recursos Hídricos (ABRH)
repository.mail.fl_str_mv ||rbrh@abrh.org.br
_version_ 1754734702296563712