Optimal architecture for artificial neural networks as pressure estimator
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | RBRH (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233 |
Resumo: | ABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation. |
id |
ABRH-1_48d443966205506aa00606fd6d599f01 |
---|---|
oai_identifier_str |
oai:scielo:S2318-03312021000100233 |
network_acronym_str |
ABRH-1 |
network_name_str |
RBRH (Online) |
repository_id_str |
|
spelling |
Optimal architecture for artificial neural networks as pressure estimatorArtificial neural networkWater distribution networkData-driven modelABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation.Associação Brasileira de Recursos Hídricos2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233RBRH v.26 2021reponame:RBRH (Online)instname:Associação Brasileira de Recursos Hídricos (ABRH)instacron:ABRH10.1590/2318-0331.262120210100info:eu-repo/semantics/openAccessSouza,Rui Gabriel Modesto deBrentan,Bruno MeloLima,Gustavo Meirelleseng2021-11-18T00:00:00Zoai:scielo:S2318-03312021000100233Revistahttps://www.scielo.br/j/rbrh/https://old.scielo.br/oai/scielo-oai.php||rbrh@abrh.org.br2318-03311414-381Xopendoar:2021-11-18T00:00RBRH (Online) - Associação Brasileira de Recursos Hídricos (ABRH)false |
dc.title.none.fl_str_mv |
Optimal architecture for artificial neural networks as pressure estimator |
title |
Optimal architecture for artificial neural networks as pressure estimator |
spellingShingle |
Optimal architecture for artificial neural networks as pressure estimator Souza,Rui Gabriel Modesto de Artificial neural network Water distribution network Data-driven model |
title_short |
Optimal architecture for artificial neural networks as pressure estimator |
title_full |
Optimal architecture for artificial neural networks as pressure estimator |
title_fullStr |
Optimal architecture for artificial neural networks as pressure estimator |
title_full_unstemmed |
Optimal architecture for artificial neural networks as pressure estimator |
title_sort |
Optimal architecture for artificial neural networks as pressure estimator |
author |
Souza,Rui Gabriel Modesto de |
author_facet |
Souza,Rui Gabriel Modesto de Brentan,Bruno Melo Lima,Gustavo Meirelles |
author_role |
author |
author2 |
Brentan,Bruno Melo Lima,Gustavo Meirelles |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Souza,Rui Gabriel Modesto de Brentan,Bruno Melo Lima,Gustavo Meirelles |
dc.subject.por.fl_str_mv |
Artificial neural network Water distribution network Data-driven model |
topic |
Artificial neural network Water distribution network Data-driven model |
description |
ABSTRACT The knowledge of hydraulic parameters in water distribution networks can indicate problems in real time, such as pipe bursts, small leakages, increase in pipe roughness and illegal connections. However, an accurate indication relies on the quantity and quality of the data acquired, i.e., the number of sensors used to monitor the network and their location. It is not economic feasible have a great number of sensors, thus, the use of artificial intelligence, such as Artificial Neural Networks (ANNs) can reduce the lack of information necessary to identify problems, estimating hydraulic parameter through the few information collected. The reliability of ANNs depends on its architecture, so, in this paper, different conditions are tested for ANN training to identify which are the most relevant parameters to be adjusted when the ANN is used for pressure estimation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2318-03312021000100233 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2318-0331.262120210100 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Recursos Hídricos |
publisher.none.fl_str_mv |
Associação Brasileira de Recursos Hídricos |
dc.source.none.fl_str_mv |
RBRH v.26 2021 reponame:RBRH (Online) instname:Associação Brasileira de Recursos Hídricos (ABRH) instacron:ABRH |
instname_str |
Associação Brasileira de Recursos Hídricos (ABRH) |
instacron_str |
ABRH |
institution |
ABRH |
reponame_str |
RBRH (Online) |
collection |
RBRH (Online) |
repository.name.fl_str_mv |
RBRH (Online) - Associação Brasileira de Recursos Hídricos (ABRH) |
repository.mail.fl_str_mv |
||rbrh@abrh.org.br |
_version_ |
1754734702296563712 |