Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Brazilian Applied Science Review |
Texto Completo: | https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981 |
Resumo: | There is intensive growth in researches regarding surveillance and threat detection. Surveillance tasks often involve several actors with multiple interactions. Thus, modeling a complex activity becomes challenging. This work proposes an architecture comprised of low, middle, and high levels. The low-level recognizes characteristics, positioning of objects, and time of occurrences utilizing a camera and Unmanned Aerial Vehicle (UAV) sensors. The middle-level is responsible for structuring the information from the low-level using Deterministic Finite Automata (DFA). An expert system attached in the high-level module performs inference over the organized information to enables the system to have simple reasoning modules, assisting the operator decision. The architecture is embedded in a UAV to reduce the number of cameras and to reach difficult areas. The experiments showed that the proposed system updated the grammatical structure effectively, given a sequence of information computed by the vision modules. |
id |
BASR-0_9bb73bb25eb8c27eabf91f743e96c81a |
---|---|
oai_identifier_str |
oai:ojs2.ojs.brazilianjournals.com.br:article/9981 |
network_acronym_str |
BASR-0 |
network_name_str |
Brazilian Applied Science Review |
repository_id_str |
|
spelling |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripuladoIntelligent SystemsUAVRobotic SystemsSurveillanceSemi-Autonomous Mission.There is intensive growth in researches regarding surveillance and threat detection. Surveillance tasks often involve several actors with multiple interactions. Thus, modeling a complex activity becomes challenging. This work proposes an architecture comprised of low, middle, and high levels. The low-level recognizes characteristics, positioning of objects, and time of occurrences utilizing a camera and Unmanned Aerial Vehicle (UAV) sensors. The middle-level is responsible for structuring the information from the low-level using Deterministic Finite Automata (DFA). An expert system attached in the high-level module performs inference over the organized information to enables the system to have simple reasoning modules, assisting the operator decision. The architecture is embedded in a UAV to reduce the number of cameras and to reach difficult areas. The experiments showed that the proposed system updated the grammatical structure effectively, given a sequence of information computed by the vision modules.Brazilian Journals Publicações de Periódicos e Editora Ltda.2020-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/998110.34115/basrv4n3-027Brazilian Applied Science Review; Vol. 4 No. 3 (2020); 1086-1103Brazilian Applied Science Review; v. 4 n. 3 (2020); 1086-11032595-36212595-362110.34115/basr.v4i3reponame:Brazilian Applied Science Reviewinstname:Brazilian Journals Publicações de Periódicos e Editora Ltdainstacron:FIEPporhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981/8371Copyright (c) 2020 Brazilian Applied Science Reviewinfo:eu-repo/semantics/openAccessPinto, Milena F.Melo, Aurelio Gouvêa deMarins, GuilhermeBiundini, Iago Z.Marcato, André L. M.2020-06-29T18:19:03Zoai:ojs2.ojs.brazilianjournals.com.br:article/9981Revistahttps://www.brazilianjournals.com/index.php/BASRPRIhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/oaibrazilianasr@yahoo.com || brazilianasr@yahoo.com2595-36212595-3621opendoar:2020-06-29T18:19:03Brazilian Applied Science Review - Brazilian Journals Publicações de Periódicos e Editora Ltdafalse |
dc.title.none.fl_str_mv |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
title |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
spellingShingle |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado Pinto, Milena F. Intelligent Systems UAV Robotic Systems Surveillance Semi-Autonomous Mission. |
title_short |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
title_full |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
title_fullStr |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
title_full_unstemmed |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
title_sort |
Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado |
author |
Pinto, Milena F. |
author_facet |
Pinto, Milena F. Melo, Aurelio Gouvêa de Marins, Guilherme Biundini, Iago Z. Marcato, André L. M. |
author_role |
author |
author2 |
Melo, Aurelio Gouvêa de Marins, Guilherme Biundini, Iago Z. Marcato, André L. M. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Pinto, Milena F. Melo, Aurelio Gouvêa de Marins, Guilherme Biundini, Iago Z. Marcato, André L. M. |
dc.subject.por.fl_str_mv |
Intelligent Systems UAV Robotic Systems Surveillance Semi-Autonomous Mission. |
topic |
Intelligent Systems UAV Robotic Systems Surveillance Semi-Autonomous Mission. |
description |
There is intensive growth in researches regarding surveillance and threat detection. Surveillance tasks often involve several actors with multiple interactions. Thus, modeling a complex activity becomes challenging. This work proposes an architecture comprised of low, middle, and high levels. The low-level recognizes characteristics, positioning of objects, and time of occurrences utilizing a camera and Unmanned Aerial Vehicle (UAV) sensors. The middle-level is responsible for structuring the information from the low-level using Deterministic Finite Automata (DFA). An expert system attached in the high-level module performs inference over the organized information to enables the system to have simple reasoning modules, assisting the operator decision. The architecture is embedded in a UAV to reduce the number of cameras and to reach difficult areas. The experiments showed that the proposed system updated the grammatical structure effectively, given a sequence of information computed by the vision modules. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-13 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981 10.34115/basrv4n3-027 |
url |
https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981 |
identifier_str_mv |
10.34115/basrv4n3-027 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981/8371 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Brazilian Applied Science Review info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2020 Brazilian Applied Science Review |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
dc.source.none.fl_str_mv |
Brazilian Applied Science Review; Vol. 4 No. 3 (2020); 1086-1103 Brazilian Applied Science Review; v. 4 n. 3 (2020); 1086-1103 2595-3621 2595-3621 10.34115/basr.v4i3 reponame:Brazilian Applied Science Review instname:Brazilian Journals Publicações de Periódicos e Editora Ltda instacron:FIEP |
instname_str |
Brazilian Journals Publicações de Periódicos e Editora Ltda |
instacron_str |
FIEP |
institution |
FIEP |
reponame_str |
Brazilian Applied Science Review |
collection |
Brazilian Applied Science Review |
repository.name.fl_str_mv |
Brazilian Applied Science Review - Brazilian Journals Publicações de Periódicos e Editora Ltda |
repository.mail.fl_str_mv |
brazilianasr@yahoo.com || brazilianasr@yahoo.com |
_version_ |
1797240006666878976 |