Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado

Detalhes bibliográficos
Autor(a) principal: Pinto, Milena F.
Data de Publicação: 2020
Outros Autores: Melo, Aurelio Gouvêa de, Marins, Guilherme, Biundini, Iago Z., Marcato, André L. M.
Tipo de documento: Artigo
Idioma: por
Título da fonte: Brazilian Applied Science Review
Texto Completo: https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981
Resumo: There is intensive growth in researches regarding surveillance and threat detection. Surveillance tasks often involve several actors with multiple interactions. Thus, modeling a complex activity becomes challenging. This work proposes an architecture comprised of low, middle, and high levels. The low-level recognizes characteristics, positioning of objects, and time of occurrences utilizing a camera and Unmanned Aerial Vehicle (UAV) sensors. The middle-level is responsible for structuring the information from the low-level using Deterministic Finite Automata (DFA). An expert system attached in the high-level module performs inference over the organized information to enables the system to have simple reasoning modules, assisting the operator decision. The architecture is embedded in a UAV to reduce the number of cameras and to reach difficult areas. The experiments showed that the proposed system updated the grammatical structure effectively, given a sequence of information computed by the vision modules.
id BASR-0_9bb73bb25eb8c27eabf91f743e96c81a
oai_identifier_str oai:ojs2.ojs.brazilianjournals.com.br:article/9981
network_acronym_str BASR-0
network_name_str Brazilian Applied Science Review
repository_id_str
spelling Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripuladoIntelligent SystemsUAVRobotic SystemsSurveillanceSemi-Autonomous Mission.There is intensive growth in researches regarding surveillance and threat detection. Surveillance tasks often involve several actors with multiple interactions. Thus, modeling a complex activity becomes challenging. This work proposes an architecture comprised of low, middle, and high levels. The low-level recognizes characteristics, positioning of objects, and time of occurrences utilizing a camera and Unmanned Aerial Vehicle (UAV) sensors. The middle-level is responsible for structuring the information from the low-level using Deterministic Finite Automata (DFA). An expert system attached in the high-level module performs inference over the organized information to enables the system to have simple reasoning modules, assisting the operator decision. The architecture is embedded in a UAV to reduce the number of cameras and to reach difficult areas. The experiments showed that the proposed system updated the grammatical structure effectively, given a sequence of information computed by the vision modules.Brazilian Journals Publicações de Periódicos e Editora Ltda.2020-05-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/998110.34115/basrv4n3-027Brazilian Applied Science Review; Vol. 4 No. 3 (2020); 1086-1103Brazilian Applied Science Review; v. 4 n. 3 (2020); 1086-11032595-36212595-362110.34115/basr.v4i3reponame:Brazilian Applied Science Reviewinstname:Brazilian Journals Publicações de Periódicos e Editora Ltdainstacron:FIEPporhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981/8371Copyright (c) 2020 Brazilian Applied Science Reviewinfo:eu-repo/semantics/openAccessPinto, Milena F.Melo, Aurelio Gouvêa deMarins, GuilhermeBiundini, Iago Z.Marcato, André L. M.2020-06-29T18:19:03Zoai:ojs2.ojs.brazilianjournals.com.br:article/9981Revistahttps://www.brazilianjournals.com/index.php/BASRPRIhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/oaibrazilianasr@yahoo.com || brazilianasr@yahoo.com2595-36212595-3621opendoar:2020-06-29T18:19:03Brazilian Applied Science Review - Brazilian Journals Publicações de Periódicos e Editora Ltdafalse
dc.title.none.fl_str_mv Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
title Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
spellingShingle Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
Pinto, Milena F.
Intelligent Systems
UAV
Robotic Systems
Surveillance
Semi-Autonomous Mission.
title_short Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
title_full Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
title_fullStr Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
title_full_unstemmed Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
title_sort Surveillance Architecture for Human Activity Recognition using Unmanned Aerial Vehicle / Arquitetura de vigilância para reconhecimento de atividade humana usando veículo aéreo não tripulado
author Pinto, Milena F.
author_facet Pinto, Milena F.
Melo, Aurelio Gouvêa de
Marins, Guilherme
Biundini, Iago Z.
Marcato, André L. M.
author_role author
author2 Melo, Aurelio Gouvêa de
Marins, Guilherme
Biundini, Iago Z.
Marcato, André L. M.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Pinto, Milena F.
Melo, Aurelio Gouvêa de
Marins, Guilherme
Biundini, Iago Z.
Marcato, André L. M.
dc.subject.por.fl_str_mv Intelligent Systems
UAV
Robotic Systems
Surveillance
Semi-Autonomous Mission.
topic Intelligent Systems
UAV
Robotic Systems
Surveillance
Semi-Autonomous Mission.
description There is intensive growth in researches regarding surveillance and threat detection. Surveillance tasks often involve several actors with multiple interactions. Thus, modeling a complex activity becomes challenging. This work proposes an architecture comprised of low, middle, and high levels. The low-level recognizes characteristics, positioning of objects, and time of occurrences utilizing a camera and Unmanned Aerial Vehicle (UAV) sensors. The middle-level is responsible for structuring the information from the low-level using Deterministic Finite Automata (DFA). An expert system attached in the high-level module performs inference over the organized information to enables the system to have simple reasoning modules, assisting the operator decision. The architecture is embedded in a UAV to reduce the number of cameras and to reach difficult areas. The experiments showed that the proposed system updated the grammatical structure effectively, given a sequence of information computed by the vision modules.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-13
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981
10.34115/basrv4n3-027
url https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981
identifier_str_mv 10.34115/basrv4n3-027
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/9981/8371
dc.rights.driver.fl_str_mv Copyright (c) 2020 Brazilian Applied Science Review
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Brazilian Applied Science Review
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Brazilian Journals Publicações de Periódicos e Editora Ltda.
publisher.none.fl_str_mv Brazilian Journals Publicações de Periódicos e Editora Ltda.
dc.source.none.fl_str_mv Brazilian Applied Science Review; Vol. 4 No. 3 (2020); 1086-1103
Brazilian Applied Science Review; v. 4 n. 3 (2020); 1086-1103
2595-3621
2595-3621
10.34115/basr.v4i3
reponame:Brazilian Applied Science Review
instname:Brazilian Journals Publicações de Periódicos e Editora Ltda
instacron:FIEP
instname_str Brazilian Journals Publicações de Periódicos e Editora Ltda
instacron_str FIEP
institution FIEP
reponame_str Brazilian Applied Science Review
collection Brazilian Applied Science Review
repository.name.fl_str_mv Brazilian Applied Science Review - Brazilian Journals Publicações de Periódicos e Editora Ltda
repository.mail.fl_str_mv brazilianasr@yahoo.com || brazilianasr@yahoo.com
_version_ 1797240006666878976