Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Título da fonte: | Portal de Dados Abertos da CAPES |
Texto Completo: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6395733 |
id |
BRCRIS_06973ccf1fd83df4a1ada776c7e89196 |
---|---|
network_acronym_str |
CAPES |
network_name_str |
Portal de Dados Abertos da CAPES |
dc.title.pt-BR.fl_str_mv |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
title |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
spellingShingle |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines oil and gas óleo e gás MATHEUS ARAUJO MARINS |
title_short |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
title_full |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
title_fullStr |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
title_full_unstemmed |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
title_sort |
Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines |
topic |
oil and gas óleo e gás |
publishDate |
2018 |
format |
masterThesis |
url |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6395733 |
author_role |
author |
author |
MATHEUS ARAUJO MARINS |
author_facet |
MATHEUS ARAUJO MARINS |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4476862527285936 |
dc.contributor.advisor1.fl_str_mv |
Sergio Lima Netto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3566465649283245 |
dc.contributor.advisor1orcid.por.fl_str_mv |
https://orcid.org/0000000173891463 |
dc.publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO |
publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO |
instname_str |
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO |
dc.publisher.program.fl_str_mv |
ENGENHARIA ELÉTRICA |
dc.description.course.none.fl_txt_mv |
ENGENHARIA ELÉTRICA |
reponame_str |
Portal de Dados Abertos da CAPES |
collection |
Portal de Dados Abertos da CAPES |
spelling |
CAPESPortal de Dados Abertos da CAPESMachine Learning Techniques Applied to Hydrate Failure Detection in Production LinesMachine Learning Techniques Applied to Hydrate Failure Detection in Production LinesMachine Learning Techniques Applied to Hydrate Failure Detection in Production LinesMachine Learning Techniques Applied to Hydrate Failure Detection in Production LinesMachine Learning Techniques Applied to Hydrate Failure Detection in Production LinesMachine Learning Techniques Applied to Hydrate Failure Detection in Production LinesMachine Learning Techniques Applied to Hydrate Failure Detection in Production Linesoil and gas2018masterThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6395733authorMATHEUS ARAUJO MARINShttp://lattes.cnpq.br/4476862527285936Sergio Lima Nettohttp://lattes.cnpq.br/3566465649283245https://orcid.org/0000000173891463UNIVERSIDADE FEDERAL DO RIO DE JANEIROUNIVERSIDADE FEDERAL DO RIO DE JANEIROUNIVERSIDADE FEDERAL DO RIO DE JANEIROENGENHARIA ELÉTRICAENGENHARIA ELÉTRICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES |
identifier_str_mv |
MARINS, MATHEUS ARAUJO. Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines. 2018. Tese. |
dc.identifier.citation.fl_str_mv |
MARINS, MATHEUS ARAUJO. Machine Learning Techniques Applied to Hydrate Failure Detection in Production Lines. 2018. Tese. |
_version_ |
1741884962610610176 |