Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing

Detalhes bibliográficos
Autor(a) principal: Mario Henrique Alves Souto Neto
Data de Publicação: 2014
Tipo de documento: Dissertação
Título da fonte: Portal de Dados Abertos da CAPES
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=1338735
id BRCRIS_3d684b086133e929956db38b2a5aed99
network_acronym_str CAPES
network_name_str Portal de Dados Abertos da CAPES
dc.title.pt-BR.fl_str_mv Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
title Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
spellingShingle Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
Monitoramento de Obras ópticas
Big Data
Mario Henrique Alves Souto Neto
title_short Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
title_full Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
title_fullStr Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
title_full_unstemmed Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
title_sort Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing
topic Monitoramento de Obras ópticas
Big Data
publishDate 2014
format masterThesis
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=1338735
author_role author
author Mario Henrique Alves Souto Neto
author_facet Mario Henrique Alves Souto Neto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0260019170705257
dc.contributor.advisor1.fl_str_mv ALVARO DE LIMA VEIGA FILHO
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8855081325345654
dc.publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
instname_str PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
dc.publisher.program.fl_str_mv ENGENHARIA ELÉTRICA
dc.description.course.none.fl_txt_mv ENGENHARIA ELÉTRICA
reponame_str Portal de Dados Abertos da CAPES
collection Portal de Dados Abertos da CAPES
spelling CAPESPortal de Dados Abertos da CAPESSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingSparse Statistical Modelling with Applications to Renewable Energy and Signal ProcessingMonitoramento de Obras ópticas2014masterThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=1338735authorMario Henrique Alves Souto Netohttp://lattes.cnpq.br/0260019170705257ALVARO DE LIMA VEIGA FILHOhttp://lattes.cnpq.br/8855081325345654PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROENGENHARIA ELÉTRICAENGENHARIA ELÉTRICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES
identifier_str_mv Neto, Mario Henrique Alves Souto. Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing. 2014. Tese.
dc.identifier.citation.fl_str_mv Neto, Mario Henrique Alves Souto. Sparse Statistical Modelling with Applications to Renewable Energy and Signal Processing. 2014. Tese.
_version_ 1741885885336518656