DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES

Detalhes bibliográficos
Autor(a) principal: GABRIEL MATOS ARAUJO
Data de Publicação: 2015
Tipo de documento: Tese
Título da fonte: Portal de Dados Abertos da CAPES
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=2356299
id BRCRIS_8c46ee57e158a808648b79c95db540b7
network_acronym_str CAPES
network_name_str Portal de Dados Abertos da CAPES
dc.title.pt-BR.fl_str_mv DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
title DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
spellingShingle DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
1. Video Tracking. 2. Face Tracking. 3. Machine Learning.
Aprendizado de Maquina
GABRIEL MATOS ARAUJO
title_short DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
title_full DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
title_fullStr DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
title_full_unstemmed DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
title_sort DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES
topic 1. Video Tracking. 2. Face Tracking. 3. Machine Learning.
Aprendizado de Maquina
publishDate 2015
format doctoralThesis
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=2356299
author_role author
author GABRIEL MATOS ARAUJO
author_facet GABRIEL MATOS ARAUJO
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4461794616207452
dc.identifier.orcid.none.fl_str_mv https://orcid.org/0000000200333265
dc.contributor.advisor1.fl_str_mv EDUARDO ANTONIO BARROS DA SILVA
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1209382022297634
dc.contributor.advisor1orcid.por.fl_str_mv https://orcid.org/0000-0001-7755-6988
dc.publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
instname_str UNIVERSIDADE FEDERAL DO RIO DE JANEIRO
dc.publisher.program.fl_str_mv ENGENHARIA ELÉTRICA
dc.description.course.none.fl_txt_mv ENGENHARIA ELÉTRICA
reponame_str Portal de Dados Abertos da CAPES
collection Portal de Dados Abertos da CAPES
spelling CAPESPortal de Dados Abertos da CAPESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCESDETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES1. Video Tracking. 2. Face Tracking. 3. Machine Learning.2015doctoralThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=2356299authorGABRIEL MATOS ARAUJOhttp://lattes.cnpq.br/4461794616207452https://orcid.org/0000000200333265EDUARDO ANTONIO BARROS DA SILVAhttp://lattes.cnpq.br/1209382022297634https://orcid.org/0000-0001-7755-6988UNIVERSIDADE FEDERAL DO RIO DE JANEIROUNIVERSIDADE FEDERAL DO RIO DE JANEIROUNIVERSIDADE FEDERAL DO RIO DE JANEIROENGENHARIA ELÉTRICAENGENHARIA ELÉTRICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES
identifier_str_mv ARAUJO, GABRIEL MATOS. DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES. 2015. Tese.
dc.identifier.citation.fl_str_mv ARAUJO, GABRIEL MATOS. DETECTION AND TRACKING OF FACIAL LANDMARKS IN HIGH DEFINITION VIDEO SEQUENCES. 2015. Tese.
_version_ 1741884399936339968