Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.

Detalhes bibliográficos
Autor(a) principal: MATHEUS BARTOLO GUERRERO
Data de Publicação: 2018
Tipo de documento: Dissertação
Título da fonte: Portal de Dados Abertos da CAPES
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5663971
id BRCRIS_93b458c5242a7bb159e0954e2a1764d6
network_acronym_str CAPES
network_name_str Portal de Dados Abertos da CAPES
dc.title.pt-BR.fl_str_mv Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
title Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
spellingShingle Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
cadeia de Markov
Markov chain
MATHEUS BARTOLO GUERRERO
title_short Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
title_full Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
title_fullStr Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
title_full_unstemmed Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
title_sort Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.
topic cadeia de Markov
Markov chain
publishDate 2018
format masterThesis
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5663971
author_role author
author MATHEUS BARTOLO GUERRERO
author_facet MATHEUS BARTOLO GUERRERO
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7265454720438188
dc.contributor.advisor1.fl_str_mv WAGNER BARRETO DE SOUZA
dc.publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE MINAS GERAIS
publisher.none.fl_str_mv UNIVERSIDADE FEDERAL DE MINAS GERAIS
instname_str UNIVERSIDADE FEDERAL DE MINAS GERAIS
dc.publisher.program.fl_str_mv ESTATÍSTICA
dc.description.course.none.fl_txt_mv ESTATÍSTICA
reponame_str Portal de Dados Abertos da CAPES
collection Portal de Dados Abertos da CAPES
spelling CAPESPortal de Dados Abertos da CAPESInteger-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.cadeia de Markov2018masterThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5663971authorMATHEUS BARTOLO GUERREROhttp://lattes.cnpq.br/7265454720438188WAGNER BARRETO DE SOUZAUNIVERSIDADE FEDERAL DE MINAS GERAISUNIVERSIDADE FEDERAL DE MINAS GERAISUNIVERSIDADE FEDERAL DE MINAS GERAISESTATÍSTICAESTATÍSTICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES
identifier_str_mv GUERRERO, MATHEUS BARTOLO. Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.. 2018. Tese.
dc.identifier.citation.fl_str_mv GUERRERO, MATHEUS BARTOLO. Integer-valued autogressive processes with pre-established marginals and innovations: a new perspective on count time series modeling.. 2018. Tese.
_version_ 1741884305307598848