END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Título da fonte: | Portal de Dados Abertos da CAPES |
Texto Completo: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5002494 |
id |
BRCRIS_9804ec178443c74c1a11591590e1aeb0 |
---|---|
network_acronym_str |
CAPES |
network_name_str |
Portal de Dados Abertos da CAPES |
dc.title.pt-BR.fl_str_mv |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
title |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
spellingShingle |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING deep learning IGOR MACEDO QUINTANILHA |
title_short |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
title_full |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
title_fullStr |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
title_full_unstemmed |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
title_sort |
END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING |
topic |
deep learning |
publishDate |
2017 |
format |
masterThesis |
url |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5002494 |
author_role |
author |
author |
IGOR MACEDO QUINTANILHA |
author_facet |
IGOR MACEDO QUINTANILHA |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3790573686920537 |
dc.contributor.advisor1.fl_str_mv |
Sergio Lima Netto LUIZ WAGNER PEREIRA BISCAINHO |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1765239890846505 http://lattes.cnpq.br/3566465649283245 |
dc.contributor.advisor1orcid.por.fl_str_mv |
https://orcid.org/0000000173891463 https://orcid.org/0000-0003-2959-6963 |
dc.publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO |
publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO |
instname_str |
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO |
dc.publisher.program.fl_str_mv |
ENGENHARIA ELÉTRICA |
dc.description.course.none.fl_txt_mv |
ENGENHARIA ELÉTRICA |
reponame_str |
Portal de Dados Abertos da CAPES |
collection |
Portal de Dados Abertos da CAPES |
spelling |
CAPESPortal de Dados Abertos da CAPESEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGEND-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNINGdeep learning2017masterThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5002494authorIGOR MACEDO QUINTANILHAhttp://lattes.cnpq.br/3790573686920537Sergio Lima Nettohttp://lattes.cnpq.br/1765239890846505https://orcid.org/0000000173891463UNIVERSIDADE FEDERAL DO RIO DE JANEIROUNIVERSIDADE FEDERAL DO RIO DE JANEIROUNIVERSIDADE FEDERAL DO RIO DE JANEIROENGENHARIA ELÉTRICAENGENHARIA ELÉTRICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES |
identifier_str_mv |
QUINTANILHA, IGOR MACEDO. END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING. 2017. Tese. |
dc.identifier.citation.fl_str_mv |
QUINTANILHA, IGOR MACEDO. END-TO-END SPEECH RECOGNITION APPLIED TO BRAZILIAN PORTUGUESE USING DEEP LEARNING. 2017. Tese. |
_version_ |
1741882780104523776 |