Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Título da fonte: | Portal de Dados Abertos da CAPES |
Texto Completo: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6641330 |
id |
BRCRIS_ee19a2c38f9e983320870566fce78e75 |
---|---|
network_acronym_str |
CAPES |
network_name_str |
Portal de Dados Abertos da CAPES |
dc.title.pt-BR.fl_str_mv |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
title |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
spellingShingle |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets Forest Management. Remote Sensing. Random Forest. Terrain Attributes. Manejo florestal. Sensoriamento remoto. Random Forest. Atributos de terreno. ALINY APARECIDA DOS REIS |
title_short |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
title_full |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
title_fullStr |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
title_full_unstemmed |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
title_sort |
Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets |
topic |
Forest Management. Remote Sensing. Random Forest. Terrain Attributes. Manejo florestal. Sensoriamento remoto. Random Forest. Atributos de terreno. |
publishDate |
2018 |
format |
doctoralThesis |
url |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6641330 |
author_role |
author |
author |
ALINY APARECIDA DOS REIS |
author_facet |
ALINY APARECIDA DOS REIS |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5364437916631071 |
dc.identifier.orcid.none.fl_str_mv |
https://orcid.org/0000-0002-7115-1485 |
dc.contributor.advisor1.fl_str_mv |
JOSE MARCIO DE MELLO |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/9805647108156583 |
dc.contributor.advisor1orcid.por.fl_str_mv |
https://orcid.org/0000000205225060 |
dc.publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DE LAVRAS |
publisher.none.fl_str_mv |
UNIVERSIDADE FEDERAL DE LAVRAS |
instname_str |
UNIVERSIDADE FEDERAL DE LAVRAS |
dc.publisher.program.fl_str_mv |
ENGENHARIA FLORESTAL |
dc.description.course.none.fl_txt_mv |
ENGENHARIA FLORESTAL |
reponame_str |
Portal de Dados Abertos da CAPES |
collection |
Portal de Dados Abertos da CAPES |
spelling |
CAPESPortal de Dados Abertos da CAPESPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsPredicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasetsForest Management. Remote Sensing. Random Forest. Terrain Attributes.2018doctoralThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=6641330authorALINY APARECIDA DOS REIShttp://lattes.cnpq.br/5364437916631071https://orcid.org/0000-0002-7115-1485JOSE MARCIO DE MELLOhttp://lattes.cnpq.br/9805647108156583https://orcid.org/0000000205225060UNIVERSIDADE FEDERAL DE LAVRASUNIVERSIDADE FEDERAL DE LAVRASUNIVERSIDADE FEDERAL DE LAVRASENGENHARIA FLORESTALENGENHARIA FLORESTALPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES |
identifier_str_mv |
REIS, ALINY APARECIDA DOS. Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets. 2018. Tese. |
dc.identifier.citation.fl_str_mv |
REIS, ALINY APARECIDA DOS. Predicting Eucalyptus stand attributes in Minas Gerais state, Brazil: an approach using machine learning algorithms with multi-source datasets. 2018. Tese. |
_version_ |
1741883207573307392 |