Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Infectious Diseases |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-86702020000500412 |
Resumo: | Abstract Introduction Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were “medium-risk” (D-dimer >1000 ng/mL or CRP >200 mg/L); “high-risk” (D-dimer >3000 ng/mL or CRP >250 mg/L) or “suspected” (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy. |
id |
BSID-1_1181c584a021fe7f7503fbc6125b3f97 |
---|---|
oai_identifier_str |
oai:scielo:S1413-86702020000500412 |
network_acronym_str |
BSID-1 |
network_name_str |
Brazilian Journal of Infectious Diseases |
repository_id_str |
|
spelling |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic)AnticoagulationC-reactive proteinD-dimerDischargeFerritinMortalitySARS-CoV2Abstract Introduction Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were “medium-risk” (D-dimer >1000 ng/mL or CRP >200 mg/L); “high-risk” (D-dimer >3000 ng/mL or CRP >250 mg/L) or “suspected” (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy.Brazilian Society of Infectious Diseases2020-10-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-86702020000500412Brazilian Journal of Infectious Diseases v.24 n.5 2020reponame:Brazilian Journal of Infectious Diseasesinstname:Brazilian Society of Infectious Diseases (BSID)instacron:BSID10.1016/j.bjid.2020.07.010info:eu-repo/semantics/openAccessVizcaychipi,Marcela P.Shovlin,Claire L.McCarthy,AlexGodfrey,AndrewPatel,SheenaShah,Pallav L.Hayes,MichelleKeays,Richard T.Beveridge,IainDavies,Garyeng2020-11-26T00:00:00Zoai:scielo:S1413-86702020000500412Revistahttps://www.bjid.org.br/https://old.scielo.br/oai/scielo-oai.phpbjid@bjid.org.br||lgoldani@ufrgs.br1678-43911413-8670opendoar:2020-11-26T00:00Brazilian Journal of Infectious Diseases - Brazilian Society of Infectious Diseases (BSID)false |
dc.title.none.fl_str_mv |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
title |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
spellingShingle |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) Vizcaychipi,Marcela P. Anticoagulation C-reactive protein D-dimer Discharge Ferritin Mortality SARS-CoV2 |
title_short |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
title_full |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
title_fullStr |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
title_full_unstemmed |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
title_sort |
Increase in COVID-19 inpatient survival following detection of Thromboembolic and Cytokine storm risk from the point of admission to hospital by a near real time Traffic-light System (TraCe-Tic) |
author |
Vizcaychipi,Marcela P. |
author_facet |
Vizcaychipi,Marcela P. Shovlin,Claire L. McCarthy,Alex Godfrey,Andrew Patel,Sheena Shah,Pallav L. Hayes,Michelle Keays,Richard T. Beveridge,Iain Davies,Gary |
author_role |
author |
author2 |
Shovlin,Claire L. McCarthy,Alex Godfrey,Andrew Patel,Sheena Shah,Pallav L. Hayes,Michelle Keays,Richard T. Beveridge,Iain Davies,Gary |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Vizcaychipi,Marcela P. Shovlin,Claire L. McCarthy,Alex Godfrey,Andrew Patel,Sheena Shah,Pallav L. Hayes,Michelle Keays,Richard T. Beveridge,Iain Davies,Gary |
dc.subject.por.fl_str_mv |
Anticoagulation C-reactive protein D-dimer Discharge Ferritin Mortality SARS-CoV2 |
topic |
Anticoagulation C-reactive protein D-dimer Discharge Ferritin Mortality SARS-CoV2 |
description |
Abstract Introduction Our goal was to evaluate if traffic-light driven personalized care for COVID-19 was associated with improved survival in acute hospital settings. Methods Discharge outcomes were evaluated before and after prospective implementation of a real-time dashboard with feedback to ward-based clinicians. Thromboembolism categories were “medium-risk” (D-dimer >1000 ng/mL or CRP >200 mg/L); “high-risk” (D-dimer >3000 ng/mL or CRP >250 mg/L) or “suspected” (D-dimer >5000 ng/mL). Cytokine storm risk was categorized by ferritin. Results 939/1039 COVID-19 positive patients (median age 67 years, 563/939 (60%) male) completed hospital encounters to death or discharge by 21st May 2020. Thromboembolism flag criteria were reached by 568/939 (60.5%), including 238/275 (86.6%) of the patients who died, and 330/664 (49.7%) of the patients who survived to discharge, p < 0.0001. Cytokine storm flag criteria were reached by 212 (22.6%) of admissions, including 80/275 (29.1%) of the patients who died, and 132/664 (19.9%) of the patients who survived, p < 0.0001. The maximum thromboembolism flag discriminated completed encounter mortality (no flag: 37/371 [9.97%] died; medium-risk: 68/239 [28.5%]; high-risk: 105/205 [51.2%]; and suspected thromboembolism: 65/124 [52.4%], p < 0.0001). Flag criteria were reached by 535 consecutive COVID-19 positive patients whose hospital encounter completed before traffic-light introduction: 173/535 (32.3% [95% confidence intervals 28.0, 36.0]) died. For the 200 consecutive admissions after implementation of real-time traffic light flags, 46/200 (23.0% [95% confidence intervals 17.1, 28.9]) died, p = 0.013. Adjusted for age and sex, the probability of death was 0.33 (95% confidence intervals 0.30, 0.37) before traffic light implementation, 0.22 (0.17, 0.27) after implementation, p < 0.001. In subgroup analyses, older patients, males, and patients with hypertension (p ≤ 0.01), and/or diabetes (p = 0.05) derived the greatest benefit from admission under the traffic light system. Conclusion Personalized early interventions were associated with a 33% reduction in early mortality. We suggest benefit predominantly resulted from early triggers to review/enhance anticoagulation management, without exposing lower-risk patients to potential risks of full anticoagulation therapy. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-86702020000500412 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1413-86702020000500412 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1016/j.bjid.2020.07.010 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Infectious Diseases |
publisher.none.fl_str_mv |
Brazilian Society of Infectious Diseases |
dc.source.none.fl_str_mv |
Brazilian Journal of Infectious Diseases v.24 n.5 2020 reponame:Brazilian Journal of Infectious Diseases instname:Brazilian Society of Infectious Diseases (BSID) instacron:BSID |
instname_str |
Brazilian Society of Infectious Diseases (BSID) |
instacron_str |
BSID |
institution |
BSID |
reponame_str |
Brazilian Journal of Infectious Diseases |
collection |
Brazilian Journal of Infectious Diseases |
repository.name.fl_str_mv |
Brazilian Journal of Infectious Diseases - Brazilian Society of Infectious Diseases (BSID) |
repository.mail.fl_str_mv |
bjid@bjid.org.br||lgoldani@ufrgs.br |
_version_ |
1754209245103915008 |