Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | und |
Título da fonte: | Repositório da Produção Científica e Intelectual da Unicamp |
Texto Completo: | https://hdl.handle.net/20.500.12733/14148 |
Resumo: | Agradecimentos: This research was supported by the Brazilian Petroleum Corporation (Santos Basin Environmental Characterization Project – Petrobras/CENPES) and the National Agency for Petroleum, Natural Gas and Biofuels – ANP, with resources arising from the Clauses of PDI. The author F. A. G. V. Reis is also supported by the National Council for Scientific and Technological Development – CNPq |
id |
CAMP_3847cdfa6dac9372c68d3641dc97a7a9 |
---|---|
oai_identifier_str |
oai:https://www.repositorio.unicamp.br/:1370503 |
network_acronym_str |
CAMP |
network_name_str |
Repositório da Produção Científica e Intelectual da Unicamp |
repository_id_str |
|
spelling |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, BrazilArtigo originalManguezaisGoogle EarthMangroveGoogle earthVegetation indexImage classificationGoogle earth engineAgradecimentos: This research was supported by the Brazilian Petroleum Corporation (Santos Basin Environmental Characterization Project – Petrobras/CENPES) and the National Agency for Petroleum, Natural Gas and Biofuels – ANP, with resources arising from the Clauses of PDI. The author F. A. G. V. Reis is also supported by the National Council for Scientific and Technological Development – CNPqAbstract: This paper presents the mangrove mapping carried out in the Rio de Janeiro City, Brazil, using two remote sensing data processing approaches in order to evaluate their potentialities as a complementary tool for oil spill sensitivity mapping. Ten vegetation indices were computed using the Landsat 8 imagery available in Google Earth Engine, and subsequently their spectral patterns were classified through three supervised and five unsupervised methods. Additionally, one pre-processed Landsat 8 OLI bands composition were classified by these eight classification algorithms. To role as a ground-truth for the comparison of 88 automatically produced maps, a mangrove map was prepared based on the methodological guidelines of Oceanic Atmospheric Administration of United States of America for Environmental Sensitivity Index. The best results were presented by Cobweb unsupervised classification of Mangrove Vegetation Index, properly identifying a great mangrove habitats diversity, such as inland brackish, riverine fringe and seaward forestsCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFechadoUNIVERSIDADE ESTADUAL DE CAMPINASRodrigues, Flávio HenriqueCerri, Rodrigo IrineuKolya, André de AndradeVeiga, Vinícius MendesReis, Fábio Augusto Gomes Vieira2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/20.500.12733/14148RODRIGUES, Flávio Henrique et al. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote sensing applications: society and environment. Amsterdam. v. 30, n. art. 100965, Apr. 2023. Disponível em: https://hdl.handle.net/20.500.12733/14148. Acesso em: 7 mai. 2024.undhttps://repositorio.unicamp.br/acervo/detalhe/1370503reponame:Repositório da Produção Científica e Intelectual da Unicampinstname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPinfo:eu-repo/semantics/openAccess2023-11-30T21:41:37Zoai:https://www.repositorio.unicamp.br/:1370503Repositório InstitucionalPUBhttp://repositorio.unicamp.br/oai/requestreposip@unicamp.bropendoar:2023-11-30T21:41:37Repositório da Produção Científica e Intelectual da Unicamp - Universidade Estadual de Campinas (UNICAMP)false |
dc.title.none.fl_str_mv |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
title |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
spellingShingle |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil Rodrigues, Flávio Henrique Artigo original Manguezais Google Earth Mangrove Google earth Vegetation index Image classification Google earth engine |
title_short |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
title_full |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
title_fullStr |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
title_full_unstemmed |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
title_sort |
Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil |
author |
Rodrigues, Flávio Henrique |
author_facet |
Rodrigues, Flávio Henrique Cerri, Rodrigo Irineu Kolya, André de Andrade Veiga, Vinícius Mendes Reis, Fábio Augusto Gomes Vieira |
author_role |
author |
author2 |
Cerri, Rodrigo Irineu Kolya, André de Andrade Veiga, Vinícius Mendes Reis, Fábio Augusto Gomes Vieira |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
UNIVERSIDADE ESTADUAL DE CAMPINAS |
dc.contributor.author.fl_str_mv |
Rodrigues, Flávio Henrique Cerri, Rodrigo Irineu Kolya, André de Andrade Veiga, Vinícius Mendes Reis, Fábio Augusto Gomes Vieira |
dc.subject.por.fl_str_mv |
Artigo original Manguezais Google Earth Mangrove Google earth Vegetation index Image classification Google earth engine |
topic |
Artigo original Manguezais Google Earth Mangrove Google earth Vegetation index Image classification Google earth engine |
description |
Agradecimentos: This research was supported by the Brazilian Petroleum Corporation (Santos Basin Environmental Characterization Project – Petrobras/CENPES) and the National Agency for Petroleum, Natural Gas and Biofuels – ANP, with resources arising from the Clauses of PDI. The author F. A. G. V. Reis is also supported by the National Council for Scientific and Technological Development – CNPq |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/20.500.12733/14148 RODRIGUES, Flávio Henrique et al. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote sensing applications: society and environment. Amsterdam. v. 30, n. art. 100965, Apr. 2023. Disponível em: https://hdl.handle.net/20.500.12733/14148. Acesso em: 7 mai. 2024. |
url |
https://hdl.handle.net/20.500.12733/14148 |
identifier_str_mv |
RODRIGUES, Flávio Henrique et al. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote sensing applications: society and environment. Amsterdam. v. 30, n. art. 100965, Apr. 2023. Disponível em: https://hdl.handle.net/20.500.12733/14148. Acesso em: 7 mai. 2024. |
dc.language.iso.fl_str_mv |
und |
language |
und |
dc.relation.none.fl_str_mv |
https://repositorio.unicamp.br/acervo/detalhe/1370503 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório da Produção Científica e Intelectual da Unicamp instname:Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
instname_str |
Universidade Estadual de Campinas (UNICAMP) |
instacron_str |
UNICAMP |
institution |
UNICAMP |
reponame_str |
Repositório da Produção Científica e Intelectual da Unicamp |
collection |
Repositório da Produção Científica e Intelectual da Unicamp |
repository.name.fl_str_mv |
Repositório da Produção Científica e Intelectual da Unicamp - Universidade Estadual de Campinas (UNICAMP) |
repository.mail.fl_str_mv |
reposip@unicamp.br |
_version_ |
1799030834543460352 |