Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Flávio Henrique
Data de Publicação: 2023
Outros Autores: Cerri, Rodrigo Irineu, Kolya, André de Andrade, Veiga, Vinícius Mendes, Reis, Fábio Augusto Gomes Vieira
Tipo de documento: Artigo
Idioma: und
Título da fonte: Repositório da Produção Científica e Intelectual da Unicamp
Texto Completo: https://hdl.handle.net/20.500.12733/14148
Resumo: Agradecimentos: This research was supported by the Brazilian Petroleum Corporation (Santos Basin Environmental Characterization Project – Petrobras/CENPES) and the National Agency for Petroleum, Natural Gas and Biofuels – ANP, with resources arising from the Clauses of PDI. The author F. A. G. V. Reis is also supported by the National Council for Scientific and Technological Development – CNPq
id CAMP_3847cdfa6dac9372c68d3641dc97a7a9
oai_identifier_str oai:https://www.repositorio.unicamp.br/:1370503
network_acronym_str CAMP
network_name_str Repositório da Produção Científica e Intelectual da Unicamp
repository_id_str
spelling Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, BrazilArtigo originalManguezaisGoogle EarthMangroveGoogle earthVegetation indexImage classificationGoogle earth engineAgradecimentos: This research was supported by the Brazilian Petroleum Corporation (Santos Basin Environmental Characterization Project – Petrobras/CENPES) and the National Agency for Petroleum, Natural Gas and Biofuels – ANP, with resources arising from the Clauses of PDI. The author F. A. G. V. Reis is also supported by the National Council for Scientific and Technological Development – CNPqAbstract: This paper presents the mangrove mapping carried out in the Rio de Janeiro City, Brazil, using two remote sensing data processing approaches in order to evaluate their potentialities as a complementary tool for oil spill sensitivity mapping. Ten vegetation indices were computed using the Landsat 8 imagery available in Google Earth Engine, and subsequently their spectral patterns were classified through three supervised and five unsupervised methods. Additionally, one pre-processed Landsat 8 OLI bands composition were classified by these eight classification algorithms. To role as a ground-truth for the comparison of 88 automatically produced maps, a mangrove map was prepared based on the methodological guidelines of Oceanic Atmospheric Administration of United States of America for Environmental Sensitivity Index. The best results were presented by Cobweb unsupervised classification of Mangrove Vegetation Index, properly identifying a great mangrove habitats diversity, such as inland brackish, riverine fringe and seaward forestsCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFechadoUNIVERSIDADE ESTADUAL DE CAMPINASRodrigues, Flávio HenriqueCerri, Rodrigo IrineuKolya, André de AndradeVeiga, Vinícius MendesReis, Fábio Augusto Gomes Vieira2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/20.500.12733/14148RODRIGUES, Flávio Henrique et al. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote sensing applications: society and environment. Amsterdam. v. 30, n. art. 100965, Apr. 2023. Disponível em: https://hdl.handle.net/20.500.12733/14148. Acesso em: 7 mai. 2024.undhttps://repositorio.unicamp.br/acervo/detalhe/1370503reponame:Repositório da Produção Científica e Intelectual da Unicampinstname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPinfo:eu-repo/semantics/openAccess2023-11-30T21:41:37Zoai:https://www.repositorio.unicamp.br/:1370503Repositório InstitucionalPUBhttp://repositorio.unicamp.br/oai/requestreposip@unicamp.bropendoar:2023-11-30T21:41:37Repositório da Produção Científica e Intelectual da Unicamp - Universidade Estadual de Campinas (UNICAMP)false
dc.title.none.fl_str_mv Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
title Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
spellingShingle Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
Rodrigues, Flávio Henrique
Artigo original
Manguezais
Google Earth
Mangrove
Google earth
Vegetation index
Image classification
Google earth engine
title_short Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
title_full Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
title_fullStr Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
title_full_unstemmed Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
title_sort Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil
author Rodrigues, Flávio Henrique
author_facet Rodrigues, Flávio Henrique
Cerri, Rodrigo Irineu
Kolya, André de Andrade
Veiga, Vinícius Mendes
Reis, Fábio Augusto Gomes Vieira
author_role author
author2 Cerri, Rodrigo Irineu
Kolya, André de Andrade
Veiga, Vinícius Mendes
Reis, Fábio Augusto Gomes Vieira
author2_role author
author
author
author
dc.contributor.none.fl_str_mv UNIVERSIDADE ESTADUAL DE CAMPINAS
dc.contributor.author.fl_str_mv Rodrigues, Flávio Henrique
Cerri, Rodrigo Irineu
Kolya, André de Andrade
Veiga, Vinícius Mendes
Reis, Fábio Augusto Gomes Vieira
dc.subject.por.fl_str_mv Artigo original
Manguezais
Google Earth
Mangrove
Google earth
Vegetation index
Image classification
Google earth engine
topic Artigo original
Manguezais
Google Earth
Mangrove
Google earth
Vegetation index
Image classification
Google earth engine
description Agradecimentos: This research was supported by the Brazilian Petroleum Corporation (Santos Basin Environmental Characterization Project – Petrobras/CENPES) and the National Agency for Petroleum, Natural Gas and Biofuels – ANP, with resources arising from the Clauses of PDI. The author F. A. G. V. Reis is also supported by the National Council for Scientific and Technological Development – CNPq
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/20.500.12733/14148
RODRIGUES, Flávio Henrique et al. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote sensing applications: society and environment. Amsterdam. v. 30, n. art. 100965, Apr. 2023. Disponível em: https://hdl.handle.net/20.500.12733/14148. Acesso em: 7 mai. 2024.
url https://hdl.handle.net/20.500.12733/14148
identifier_str_mv RODRIGUES, Flávio Henrique et al. Comparison of vegetation indices and image classification methods for mangrove mapping at semi-detailed scale in southwest of Rio de Janeiro, Brazil. Remote sensing applications: society and environment. Amsterdam. v. 30, n. art. 100965, Apr. 2023. Disponível em: https://hdl.handle.net/20.500.12733/14148. Acesso em: 7 mai. 2024.
dc.language.iso.fl_str_mv und
language und
dc.relation.none.fl_str_mv https://repositorio.unicamp.br/acervo/detalhe/1370503
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório da Produção Científica e Intelectual da Unicamp
instname:Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
instname_str Universidade Estadual de Campinas (UNICAMP)
instacron_str UNICAMP
institution UNICAMP
reponame_str Repositório da Produção Científica e Intelectual da Unicamp
collection Repositório da Produção Científica e Intelectual da Unicamp
repository.name.fl_str_mv Repositório da Produção Científica e Intelectual da Unicamp - Universidade Estadual de Campinas (UNICAMP)
repository.mail.fl_str_mv reposip@unicamp.br
_version_ 1799030834543460352