The use of high-throughput phenotyping in genomic selection context

Detalhes bibliográficos
Autor(a) principal: Persa,Reyna
Data de Publicação: 2021
Outros Autores: Ribeiro,Pedro Cesar de Oliveira, Jarquin,Diego
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Crop Breeding and Applied Biotechnology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332021000500206
Resumo: Abstract: One of the biggest challenges that breeders face is the development of improved cultivars in changing climate conditions posing extra challenges to their labor. On the other hand, the availability of data generated with automated systems offers an opportunity to characterize genetically and phenotypically genotypes with high detail. Modern sequencing technologies delivering hundreds of thousands of molecular makers, offered the opportunity of selecting genotypes without the need of observing these in fields and this methodology was coined as Genomic Selection (GS). More recently, sophisticated automated phenotyping platforms depending on sensors able to measure a large number of plant features were also developed and have shown potential in plant breeding applications. These modern phenotyping systems that attempt to efficiently deliver phenotypic information on secondary traits are also know as high-throughput phenotyping platforms (HTPPs). The integration of HTPP with GS models opened a new research front to improve the efficiency of the selection methods based on genomic data only, specially of those traits depending on a large number of genes with small effects (complex traits). However, there are still remaining some issues to solve for developing a robust methodology able to combine in an efficient and informed way these two high dimensional data types. In this document, we provide an overview of the statistical analysis of the data derived of the HTTPs for improving the predictive ability of conventional GS models. We provide a brief introduction showing the utility of genomic data in plant breeding applications. After, we provide an overview of the field-based HTPPs considering the light detection and ranging and the unmanned aerial vehicles and how the image data derived from these platforms can be used to accelerate genetic gains. After that, we discuss about the extension of the conventional GS models to allow the incorporation of data derived of the HTPPs as main effects and also in interaction with environmental factors. The availability of several sources of information have opened a venue to investigate besides the univariate or single trait model, models based on multiple traits and also models that consider multiple time measures allowing longitudinal GS studies. Finally, we provide some conclusions as well as we mention some the current issues that do not allow to fully exploit the potential of HTTPs in plant breeding applications.
id CBAB-1_396c266517d51264d78263055b4c5b4d
oai_identifier_str oai:scielo:S1984-70332021000500206
network_acronym_str CBAB-1
network_name_str Crop Breeding and Applied Biotechnology
repository_id_str
spelling The use of high-throughput phenotyping in genomic selection contextDevelopment of improved cultivarsNext-Generation Sequencing (NGS)Genomic Selection (GS)sensor typescategories platformsAbstract: One of the biggest challenges that breeders face is the development of improved cultivars in changing climate conditions posing extra challenges to their labor. On the other hand, the availability of data generated with automated systems offers an opportunity to characterize genetically and phenotypically genotypes with high detail. Modern sequencing technologies delivering hundreds of thousands of molecular makers, offered the opportunity of selecting genotypes without the need of observing these in fields and this methodology was coined as Genomic Selection (GS). More recently, sophisticated automated phenotyping platforms depending on sensors able to measure a large number of plant features were also developed and have shown potential in plant breeding applications. These modern phenotyping systems that attempt to efficiently deliver phenotypic information on secondary traits are also know as high-throughput phenotyping platforms (HTPPs). The integration of HTPP with GS models opened a new research front to improve the efficiency of the selection methods based on genomic data only, specially of those traits depending on a large number of genes with small effects (complex traits). However, there are still remaining some issues to solve for developing a robust methodology able to combine in an efficient and informed way these two high dimensional data types. In this document, we provide an overview of the statistical analysis of the data derived of the HTTPs for improving the predictive ability of conventional GS models. We provide a brief introduction showing the utility of genomic data in plant breeding applications. After, we provide an overview of the field-based HTPPs considering the light detection and ranging and the unmanned aerial vehicles and how the image data derived from these platforms can be used to accelerate genetic gains. After that, we discuss about the extension of the conventional GS models to allow the incorporation of data derived of the HTPPs as main effects and also in interaction with environmental factors. The availability of several sources of information have opened a venue to investigate besides the univariate or single trait model, models based on multiple traits and also models that consider multiple time measures allowing longitudinal GS studies. Finally, we provide some conclusions as well as we mention some the current issues that do not allow to fully exploit the potential of HTTPs in plant breeding applications.Crop Breeding and Applied Biotechnology2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332021000500206Crop Breeding and Applied Biotechnology v.21 n.spe 2021reponame:Crop Breeding and Applied Biotechnologyinstname:Sociedade Brasileira de Melhoramento de Plantasinstacron:CBAB10.1590/1984-70332021v21sa19info:eu-repo/semantics/openAccessPersa,ReynaRibeiro,Pedro Cesar de OliveiraJarquin,Diegoeng2021-07-28T00:00:00Zoai:scielo:S1984-70332021000500206Revistahttps://cbab.sbmp.org.br/#ONGhttps://old.scielo.br/oai/scielo-oai.phpcbabjournal@gmail.com||cbab@ufv.br1984-70331518-7853opendoar:2021-07-28T00:00Crop Breeding and Applied Biotechnology - Sociedade Brasileira de Melhoramento de Plantasfalse
dc.title.none.fl_str_mv The use of high-throughput phenotyping in genomic selection context
title The use of high-throughput phenotyping in genomic selection context
spellingShingle The use of high-throughput phenotyping in genomic selection context
Persa,Reyna
Development of improved cultivars
Next-Generation Sequencing (NGS)
Genomic Selection (GS)
sensor types
categories platforms
title_short The use of high-throughput phenotyping in genomic selection context
title_full The use of high-throughput phenotyping in genomic selection context
title_fullStr The use of high-throughput phenotyping in genomic selection context
title_full_unstemmed The use of high-throughput phenotyping in genomic selection context
title_sort The use of high-throughput phenotyping in genomic selection context
author Persa,Reyna
author_facet Persa,Reyna
Ribeiro,Pedro Cesar de Oliveira
Jarquin,Diego
author_role author
author2 Ribeiro,Pedro Cesar de Oliveira
Jarquin,Diego
author2_role author
author
dc.contributor.author.fl_str_mv Persa,Reyna
Ribeiro,Pedro Cesar de Oliveira
Jarquin,Diego
dc.subject.por.fl_str_mv Development of improved cultivars
Next-Generation Sequencing (NGS)
Genomic Selection (GS)
sensor types
categories platforms
topic Development of improved cultivars
Next-Generation Sequencing (NGS)
Genomic Selection (GS)
sensor types
categories platforms
description Abstract: One of the biggest challenges that breeders face is the development of improved cultivars in changing climate conditions posing extra challenges to their labor. On the other hand, the availability of data generated with automated systems offers an opportunity to characterize genetically and phenotypically genotypes with high detail. Modern sequencing technologies delivering hundreds of thousands of molecular makers, offered the opportunity of selecting genotypes without the need of observing these in fields and this methodology was coined as Genomic Selection (GS). More recently, sophisticated automated phenotyping platforms depending on sensors able to measure a large number of plant features were also developed and have shown potential in plant breeding applications. These modern phenotyping systems that attempt to efficiently deliver phenotypic information on secondary traits are also know as high-throughput phenotyping platforms (HTPPs). The integration of HTPP with GS models opened a new research front to improve the efficiency of the selection methods based on genomic data only, specially of those traits depending on a large number of genes with small effects (complex traits). However, there are still remaining some issues to solve for developing a robust methodology able to combine in an efficient and informed way these two high dimensional data types. In this document, we provide an overview of the statistical analysis of the data derived of the HTTPs for improving the predictive ability of conventional GS models. We provide a brief introduction showing the utility of genomic data in plant breeding applications. After, we provide an overview of the field-based HTPPs considering the light detection and ranging and the unmanned aerial vehicles and how the image data derived from these platforms can be used to accelerate genetic gains. After that, we discuss about the extension of the conventional GS models to allow the incorporation of data derived of the HTPPs as main effects and also in interaction with environmental factors. The availability of several sources of information have opened a venue to investigate besides the univariate or single trait model, models based on multiple traits and also models that consider multiple time measures allowing longitudinal GS studies. Finally, we provide some conclusions as well as we mention some the current issues that do not allow to fully exploit the potential of HTTPs in plant breeding applications.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332021000500206
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332021000500206
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1984-70332021v21sa19
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Crop Breeding and Applied Biotechnology
publisher.none.fl_str_mv Crop Breeding and Applied Biotechnology
dc.source.none.fl_str_mv Crop Breeding and Applied Biotechnology v.21 n.spe 2021
reponame:Crop Breeding and Applied Biotechnology
instname:Sociedade Brasileira de Melhoramento de Plantas
instacron:CBAB
instname_str Sociedade Brasileira de Melhoramento de Plantas
instacron_str CBAB
institution CBAB
reponame_str Crop Breeding and Applied Biotechnology
collection Crop Breeding and Applied Biotechnology
repository.name.fl_str_mv Crop Breeding and Applied Biotechnology - Sociedade Brasileira de Melhoramento de Plantas
repository.mail.fl_str_mv cbabjournal@gmail.com||cbab@ufv.br
_version_ 1754209188453548032