SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Ferreira,Fernando
Data de Publicação: 2018
Outros Autores: Scapim,Carlos Alberto, Maldonado,Carlos, Mora,Freddy
Tipo de documento: Relatório
Idioma: eng
Título da fonte: Crop Breeding and Applied Biotechnology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309
Resumo: Abstract Studies on genetic diversity and population structure provide basic information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes.
id CBAB-1_9b7b5d6c82d7320594fea7569a26bdf5
oai_identifier_str oai:scielo:S1984-70332018000300309
network_acronym_str CBAB-1
network_name_str Crop Breeding and Applied Biotechnology
repository_id_str
spelling SSR-based genetic analysis of sweet corn inbred lines using artificial neural networksUnsupervised learningself-organizing mapclustering.Abstract Studies on genetic diversity and population structure provide basic information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes.Crop Breeding and Applied Biotechnology2018-09-01info:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309Crop Breeding and Applied Biotechnology v.18 n.3 2018reponame:Crop Breeding and Applied Biotechnologyinstname:Sociedade Brasileira de Melhoramento de Plantasinstacron:CBAB10.1590/1984-70332018v18n3n45info:eu-repo/semantics/openAccessFerreira,FernandoScapim,Carlos AlbertoMaldonado,CarlosMora,Freddyeng2018-07-05T00:00:00Zoai:scielo:S1984-70332018000300309Revistahttps://cbab.sbmp.org.br/#ONGhttps://old.scielo.br/oai/scielo-oai.phpcbabjournal@gmail.com||cbab@ufv.br1984-70331518-7853opendoar:2018-07-05T00:00Crop Breeding and Applied Biotechnology - Sociedade Brasileira de Melhoramento de Plantasfalse
dc.title.none.fl_str_mv SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
title SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
spellingShingle SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
Ferreira,Fernando
Unsupervised learning
self-organizing map
clustering.
title_short SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
title_full SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
title_fullStr SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
title_full_unstemmed SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
title_sort SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
author Ferreira,Fernando
author_facet Ferreira,Fernando
Scapim,Carlos Alberto
Maldonado,Carlos
Mora,Freddy
author_role author
author2 Scapim,Carlos Alberto
Maldonado,Carlos
Mora,Freddy
author2_role author
author
author
dc.contributor.author.fl_str_mv Ferreira,Fernando
Scapim,Carlos Alberto
Maldonado,Carlos
Mora,Freddy
dc.subject.por.fl_str_mv Unsupervised learning
self-organizing map
clustering.
topic Unsupervised learning
self-organizing map
clustering.
description Abstract Studies on genetic diversity and population structure provide basic information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/report
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format report
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1984-70332018v18n3n45
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Crop Breeding and Applied Biotechnology
publisher.none.fl_str_mv Crop Breeding and Applied Biotechnology
dc.source.none.fl_str_mv Crop Breeding and Applied Biotechnology v.18 n.3 2018
reponame:Crop Breeding and Applied Biotechnology
instname:Sociedade Brasileira de Melhoramento de Plantas
instacron:CBAB
instname_str Sociedade Brasileira de Melhoramento de Plantas
instacron_str CBAB
institution CBAB
reponame_str Crop Breeding and Applied Biotechnology
collection Crop Breeding and Applied Biotechnology
repository.name.fl_str_mv Crop Breeding and Applied Biotechnology - Sociedade Brasileira de Melhoramento de Plantas
repository.mail.fl_str_mv cbabjournal@gmail.com||cbab@ufv.br
_version_ 1754209187593715712