SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , |
Tipo de documento: | Relatório |
Idioma: | eng |
Título da fonte: | Crop Breeding and Applied Biotechnology |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309 |
Resumo: | Abstract Studies on genetic diversity and population structure provide basic information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes. |
id |
CBAB-1_9b7b5d6c82d7320594fea7569a26bdf5 |
---|---|
oai_identifier_str |
oai:scielo:S1984-70332018000300309 |
network_acronym_str |
CBAB-1 |
network_name_str |
Crop Breeding and Applied Biotechnology |
repository_id_str |
|
spelling |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networksUnsupervised learningself-organizing mapclustering.Abstract Studies on genetic diversity and population structure provide basic information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes.Crop Breeding and Applied Biotechnology2018-09-01info:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309Crop Breeding and Applied Biotechnology v.18 n.3 2018reponame:Crop Breeding and Applied Biotechnologyinstname:Sociedade Brasileira de Melhoramento de Plantasinstacron:CBAB10.1590/1984-70332018v18n3n45info:eu-repo/semantics/openAccessFerreira,FernandoScapim,Carlos AlbertoMaldonado,CarlosMora,Freddyeng2018-07-05T00:00:00Zoai:scielo:S1984-70332018000300309Revistahttps://cbab.sbmp.org.br/#ONGhttps://old.scielo.br/oai/scielo-oai.phpcbabjournal@gmail.com||cbab@ufv.br1984-70331518-7853opendoar:2018-07-05T00:00Crop Breeding and Applied Biotechnology - Sociedade Brasileira de Melhoramento de Plantasfalse |
dc.title.none.fl_str_mv |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
title |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
spellingShingle |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks Ferreira,Fernando Unsupervised learning self-organizing map clustering. |
title_short |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
title_full |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
title_fullStr |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
title_full_unstemmed |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
title_sort |
SSR-based genetic analysis of sweet corn inbred lines using artificial neural networks |
author |
Ferreira,Fernando |
author_facet |
Ferreira,Fernando Scapim,Carlos Alberto Maldonado,Carlos Mora,Freddy |
author_role |
author |
author2 |
Scapim,Carlos Alberto Maldonado,Carlos Mora,Freddy |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ferreira,Fernando Scapim,Carlos Alberto Maldonado,Carlos Mora,Freddy |
dc.subject.por.fl_str_mv |
Unsupervised learning self-organizing map clustering. |
topic |
Unsupervised learning self-organizing map clustering. |
description |
Abstract Studies on genetic diversity and population structure provide basic information at the molecular level, which is a key input for breeding programs of crop species. This study evaluated the genetic diversity of 12 elite lines of sweet corn, using 20 microsatellite markers. To determine the genetic differentiation among lines, we used an artificial neural network with the self-organizing map (SOM) algorithm. This algorithm identified three genetically differentiated groups and produced relatively more accurate results than UPGMA, according to the indices of Davies-Bouldin and RMSSTD (Root Mean Square Standard Deviation). The expected heterozygosity was high (He>0.5) for 90% and the polymorphism information content high (PIC>0.6) for 40% of the SSR loci, indicating their potential to detect genetic differences among lines. The high genetic differentiation, detected by the neural network procedure, would allow the selection of promising divergent sweet corn genotypes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/report |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
report |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1984-70332018000300309 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1984-70332018v18n3n45 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Crop Breeding and Applied Biotechnology |
publisher.none.fl_str_mv |
Crop Breeding and Applied Biotechnology |
dc.source.none.fl_str_mv |
Crop Breeding and Applied Biotechnology v.18 n.3 2018 reponame:Crop Breeding and Applied Biotechnology instname:Sociedade Brasileira de Melhoramento de Plantas instacron:CBAB |
instname_str |
Sociedade Brasileira de Melhoramento de Plantas |
instacron_str |
CBAB |
institution |
CBAB |
reponame_str |
Crop Breeding and Applied Biotechnology |
collection |
Crop Breeding and Applied Biotechnology |
repository.name.fl_str_mv |
Crop Breeding and Applied Biotechnology - Sociedade Brasileira de Melhoramento de Plantas |
repository.mail.fl_str_mv |
cbabjournal@gmail.com||cbab@ufv.br |
_version_ |
1754209187593715712 |