Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm

Detalhes bibliográficos
Autor(a) principal: Souza, Vanessa Faria de
Data de Publicação: 2022
Tipo de documento: Artigo
Idioma: por
Título da fonte: EAD em Foco
Texto Completo: https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732
Resumo: MOOCs are gradually evolving which is due to the wide dissemination of virtual learning environments, which provide means of interaction for participants, one of which is the discussion forum, which has a lot of information about student engagement. However, reading all the posts is a difficult task, as MOOCs tend to have a very high number of students enrolled. In this sense, text mining can help teachers gain relevant knowledge about students' posts. Thus, in this study, an emotion miner was implemented for MOOC forums, using the Python programming language, in order to identify and analyze the feelings that each student expresses when interacting with others, in these environments. The results obtained, in initial experiments, show that the miner proved to be efficient in extracting students' emotions, reaching an accuracy of 40% and that positive feelings such as joy and surprise reflect on the conclusion of the MOOCs, while negative feelings such as sadness and anger are indicative of dropping out of the course. Keywords: MOOCs. Discussion forums. Miner of emotions. Naive Bayes Algorithm.
id CECIERJ_2d47456651965ee68ee645fea70f1585
oai_identifier_str oai:ojs.eademfoco.cecierj.edu.br:article/1732
network_acronym_str CECIERJ
network_name_str EAD em Foco
repository_id_str
spelling Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes AlgorithmAplicación de un Emotion Miner en foros de discusión de un curso masivo abierto en línea (MOOC) brasileño: un enfoque que utiliza el algoritmo Naive BayesAplicação de um Minerador de Emoções em Fóruns de Discussão de um Massive Open Online Course (MOOC) Brasileiro: uma Abordagem Utilizando o Algoritmo Naive BayesMOOCs are gradually evolving which is due to the wide dissemination of virtual learning environments, which provide means of interaction for participants, one of which is the discussion forum, which has a lot of information about student engagement. However, reading all the posts is a difficult task, as MOOCs tend to have a very high number of students enrolled. In this sense, text mining can help teachers gain relevant knowledge about students' posts. Thus, in this study, an emotion miner was implemented for MOOC forums, using the Python programming language, in order to identify and analyze the feelings that each student expresses when interacting with others, in these environments. The results obtained, in initial experiments, show that the miner proved to be efficient in extracting students' emotions, reaching an accuracy of 40% and that positive feelings such as joy and surprise reflect on the conclusion of the MOOCs, while negative feelings such as sadness and anger are indicative of dropping out of the course. Keywords: MOOCs. Discussion forums. Miner of emotions. Naive Bayes Algorithm.En evolución gradual debido a la expansión de los entornos virtuales de aprendizaje, los MOOC proporcionan a los participantes numerosos medios de interacción. Entre estos medios, se destaca el foro de discusión, un entorno que registra diferente información sobre la participación de los estudiantes. Sin embargo, leer todas las publicaciones es una tarea difícil, ya que los MOOC tienden a tener una gran variedad de estudiantes matriculados. En este sentido, la minería de textos puede ayudar a los profesores a obtener conocimientos relevantes sobre las publicaciones de los estudiantes. Teniendo en cuenta estas discusiones, en este estudio se implementó un minero de emociones para foros MOOC, utilizando el lenguaje de programación Python, con el fin de identificar y analizar los sentimientos que cada alumno expresa al interactuar con sus compañeros en estos entornos. Los resultados obtenidos, en experimentos iniciales, indican que el minero demostró ser eficiente en extraer las emociones de los estudiantes, alcanzando una precisión del 40%. Además, mostraron que los sentimientos positivos, como la alegría y la sorpresa, se reflejan en la conclusión de los MOOC, mientras que los sentimientos negativos, como la tristeza y el enfado, son indicativos de abandono del curso.Em gradativa evolução devido à disseminação dos ambientes virtuais de aprendizagem, os MOOCs disponibilizam aos participantes inúmeros meios de interação. Dentre esses meios, destaca-se o fórum de discussão, ambiente que registra diferentes informações a respeito do engajamento dos alunos. Contudo, realizar a leitura de todas as postagens é uma tarefa difícil, pois os MOOCs costumam ter uma faixa muito alta de alunos matriculados. Nesse sentido, a mineração de textos pode auxiliar professores a obter conhecimentos relevantes sobre as postagens dos alunos. Levando em consideração essas discussões, neste estudo, foi realizada a implementação de um minerador de emoções para fóruns MOOC, utilizando a linguagem de programação Python, com o objetivo de identificar e analisar os sentimentos que cada aluno expressa ao interagir com os colegas nesses ambientes. Os resultados obtidos, em experimentos iniciais, indicam que o minerador mostrou-se eficiente na extração das emoções dos alunos, alcançando uma acurácia de 40%. Além disso, mostraram que sentimentos positivos, como alegria e surpresa, refletem na conclusão dos MOOCs, enquanto sentimentos negativos, como tristeza e raiva, são indicativos de abandono do curso. Palavras-chave: MOOCs. Fóruns de discussão. Minerador de emoções. Algoritmo Naive Bayes. Fundação Cecierj2022-06-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://eademfoco.cecierj.edu.br/index.php/Revista/article/view/173210.18264/eadf.v12i2.1732EaD em Foco; Vol. 12 No. 2 (2022); e1732EaD em Foco; Vol. 12 Núm. 2 (2022); e1732EaD em Foco; v. 12 n. 2 (2022); e17322177-8310reponame:EAD em Focoinstname:Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)instacron:CECIERJporhttps://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732/767https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732/796Copyright (c) 2022 EaD em Focohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccess Souza, Vanessa Faria de2023-04-01T03:05:04Zoai:ojs.eademfoco.cecierj.edu.br:article/1732Revistahttps://eademfoco.cecierj.edu.br/index.php/RevistaONGhttp://eademfoco.cecierj.edu.br/index.php/Revista/oai||eademfoco@cecierj.edu.br2177-83102177-8310opendoar:2023-04-01T03:05:04EAD em Foco - Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)false
dc.title.none.fl_str_mv Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
Aplicación de un Emotion Miner en foros de discusión de un curso masivo abierto en línea (MOOC) brasileño: un enfoque que utiliza el algoritmo Naive Bayes
Aplicação de um Minerador de Emoções em Fóruns de Discussão de um Massive Open Online Course (MOOC) Brasileiro: uma Abordagem Utilizando o Algoritmo Naive Bayes
title Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
spellingShingle Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
Souza, Vanessa Faria de
title_short Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
title_full Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
title_fullStr Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
title_full_unstemmed Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
title_sort Application of an Emotion Miner in Discussion Forums of a Massive Open Online Course (MOOC) in Brazil: an Approach Using the Naive Bayes Algorithm
author Souza, Vanessa Faria de
author_facet Souza, Vanessa Faria de
author_role author
dc.contributor.author.fl_str_mv Souza, Vanessa Faria de
description MOOCs are gradually evolving which is due to the wide dissemination of virtual learning environments, which provide means of interaction for participants, one of which is the discussion forum, which has a lot of information about student engagement. However, reading all the posts is a difficult task, as MOOCs tend to have a very high number of students enrolled. In this sense, text mining can help teachers gain relevant knowledge about students' posts. Thus, in this study, an emotion miner was implemented for MOOC forums, using the Python programming language, in order to identify and analyze the feelings that each student expresses when interacting with others, in these environments. The results obtained, in initial experiments, show that the miner proved to be efficient in extracting students' emotions, reaching an accuracy of 40% and that positive feelings such as joy and surprise reflect on the conclusion of the MOOCs, while negative feelings such as sadness and anger are indicative of dropping out of the course. Keywords: MOOCs. Discussion forums. Miner of emotions. Naive Bayes Algorithm.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-07
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732
10.18264/eadf.v12i2.1732
url https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732
identifier_str_mv 10.18264/eadf.v12i2.1732
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732/767
https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1732/796
dc.rights.driver.fl_str_mv Copyright (c) 2022 EaD em Foco
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 EaD em Foco
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Fundação Cecierj
publisher.none.fl_str_mv Fundação Cecierj
dc.source.none.fl_str_mv EaD em Foco; Vol. 12 No. 2 (2022); e1732
EaD em Foco; Vol. 12 Núm. 2 (2022); e1732
EaD em Foco; v. 12 n. 2 (2022); e1732
2177-8310
reponame:EAD em Foco
instname:Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)
instacron:CECIERJ
instname_str Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)
instacron_str CECIERJ
institution CECIERJ
reponame_str EAD em Foco
collection EAD em Foco
repository.name.fl_str_mv EAD em Foco - Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)
repository.mail.fl_str_mv ||eademfoco@cecierj.edu.br
_version_ 1814253786788528128