COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/45829 |
Resumo: | Porto University. Centro Hospitalar Universitário Do Porto. Faculty of Medicine. Cardiovascular R&D Center. Porto, Portugal / Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil. |
id |
CRUZ_30e0c295edadade97792e1bdd582e717 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/45829 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Carvalho, Alysson Roncally S.Guimarães, AlanWerberich, Gabriel MadeiraCastro, Stephane Nery dePinto, Joana Sofia F.Schmitt, Willian RebouçasFrança, ManuelaBozza, Fernando AugustoGuimarães, Bruno Leonardo da SilvaZin, Walter AraujoRodrigues, Rosana Souza2021-01-26T15:35:05Z2021-01-26T15:35:05Z2020CARVALHO, Alysson Roncally S. et al. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Frontiers in Medicine, v. 7, p. 1-11, 2020.2296-858Xhttps://www.arca.fiocruz.br/handle/icict/4582910.3389/fmed.2020.577609engFrontiers MediaCOVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePorto University. Centro Hospitalar Universitário Do Porto. Faculty of Medicine. Cardiovascular R&D Center. Porto, Portugal / Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Departamento de Radiologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Hospital Barra D'Or. Rio de Janeiro, RJ, Brasil.Centro Hospitalar Complexo Universitário Do Porto. Radiology Department. Porto, Portugal.Centro Hospitalar Complexo Universitário Do Porto. Radiology Department. Porto, Portugal.Centro Hospitalar Complexo Universitário Do Porto. Radiology Department. Porto, Portugal / Porto University. Instituto de Ciências Biomédicas Abel Salazar. Porto, Portugal.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Instituto D'Or de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Hospital Niterói D'Or. Niterói, RJ, Brasil.Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Departamento de Radiologia. Rio de Janeiro, RJ, Brasil / Instituto D'Or de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Purpose: This work aims to develop a computer-aided diagnosis (CAD) to quantify the extent of pulmonary involvement (PI) in COVID-19 as well as the radiological patterns referred to as lung opacities in chest computer tomography (CT). Methods: One hundred thirty subjects with COVID-19 pneumonia who underwent chest CT at hospital admission were retrospectively studied (141 sets of CT scan images). Eighty-eight healthy individuals without radiological evidence of acute lung disease served as controls. Two radiologists selected up to four regions of interest (ROI) per patient (totaling 1,475 ROIs) visually regarded as well-aerated regions (472), ground-glass opacity (GGO, 413), crazy paving and linear opacities (CP/LO, 340), and consolidation (250). After balancing with 250 ROIs for each class, the density quantiles (2.5, 25, 50, 75, and 97.5%) of 1,000 ROIs were used to train (700), validate (150), and test (150 ROIs) an artificial neural network (ANN) classifier (60 neurons in a single-hidden-layer architecture). Pulmonary involvement was defined as the sum of GGO, CP/LO, and consolidation volumes divided by total lung volume (TLV), and the cutoff of normality between controls and COVID-19 patients was determined with a receiver operator characteristic (ROC) curve. The severity of pulmonary involvement in COVID-19 patients was also assessed by calculating Z scores relative to the average volume of parenchymal opacities in controls. Thus, COVID-19 cases were classified as mild (<cutoff of normality), moderate (cutoff of normality ≤ pulmonary involvement < Z score 3), and severe pulmonary involvement (Z score ≥3). Results: Cohen's kappa agreement between CAD and radiologist classification was 81% (79-84%, 95% CI). The ROC curve of PI by the ANN presented a threshold of 21.5%, sensitivity of 0.80, specificity of 0.86, AUC of 0.90, accuracy of 0.82, F score of 0.85, and 0.65 Matthews' correlation coefficient. Accordingly, 77 patients were classified as having severe pulmonary involvement reaching 55 ± 13% of the TLV (Z score related to controls ≥3) and presented significantly higher lung weight, serum C-reactive protein concentration, proportion of hospitalization in intensive care units, instances of mechanical ventilation, and case fatality. Conclusion: The proposed CAD aided in detecting and quantifying the extent of pulmonary involvement, helping to phenotype patients with COVID-19 pneumonia.COVID-19Computer-aided diagnosisDeep learningQuantitative chest CT-analysisRadiomicsPneumoniainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-83099https://www.arca.fiocruz.br/bitstream/icict/45829/1/license.txt586c046dcfeef936e32f0323bb9a47c0MD51ORIGINALChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdfChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdfapplication/pdf5311082https://www.arca.fiocruz.br/bitstream/icict/45829/2/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf41c525cc6de2a9e38f24684032a68fffMD52TEXTChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txtChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txtExtracted texttext/plain46084https://www.arca.fiocruz.br/bitstream/icict/45829/3/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txt40448866e994d8c26b585c7484260b5aMD53icict/458292021-05-24 21:27:32.501oai:www.arca.fiocruz.br:icict/45829Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUw0KDQpGw6FiaW8gTWFycXVlcywgQ1BGOiAxMTMuMTg3Ljg1Ny00MCwgdmluY3VsYWRvIGEgSU5JIC0gSW5zdGl0dXRvIE5hY2lvbmFsIGRlIEluZmVjdG9sb2dpYSBFdmFuZHJvIENoYWdhcwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352021-05-25T00:27:32Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.pt_BR.fl_str_mv |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
title |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
spellingShingle |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis Carvalho, Alysson Roncally S. COVID-19 Computer-aided diagnosis Deep learning Quantitative chest CT-analysis Radiomics Pneumonia |
title_short |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
title_full |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
title_fullStr |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
title_full_unstemmed |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
title_sort |
COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis |
author |
Carvalho, Alysson Roncally S. |
author_facet |
Carvalho, Alysson Roncally S. Guimarães, Alan Werberich, Gabriel Madeira Castro, Stephane Nery de Pinto, Joana Sofia F. Schmitt, Willian Rebouças França, Manuela Bozza, Fernando Augusto Guimarães, Bruno Leonardo da Silva Zin, Walter Araujo Rodrigues, Rosana Souza |
author_role |
author |
author2 |
Guimarães, Alan Werberich, Gabriel Madeira Castro, Stephane Nery de Pinto, Joana Sofia F. Schmitt, Willian Rebouças França, Manuela Bozza, Fernando Augusto Guimarães, Bruno Leonardo da Silva Zin, Walter Araujo Rodrigues, Rosana Souza |
author2_role |
author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Carvalho, Alysson Roncally S. Guimarães, Alan Werberich, Gabriel Madeira Castro, Stephane Nery de Pinto, Joana Sofia F. Schmitt, Willian Rebouças França, Manuela Bozza, Fernando Augusto Guimarães, Bruno Leonardo da Silva Zin, Walter Araujo Rodrigues, Rosana Souza |
dc.subject.en.pt_BR.fl_str_mv |
COVID-19 Computer-aided diagnosis Deep learning Quantitative chest CT-analysis Radiomics Pneumonia |
topic |
COVID-19 Computer-aided diagnosis Deep learning Quantitative chest CT-analysis Radiomics Pneumonia |
description |
Porto University. Centro Hospitalar Universitário Do Porto. Faculty of Medicine. Cardiovascular R&D Center. Porto, Portugal / Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020 |
dc.date.accessioned.fl_str_mv |
2021-01-26T15:35:05Z |
dc.date.available.fl_str_mv |
2021-01-26T15:35:05Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CARVALHO, Alysson Roncally S. et al. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Frontiers in Medicine, v. 7, p. 1-11, 2020. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/45829 |
dc.identifier.issn.pt_BR.fl_str_mv |
2296-858X |
dc.identifier.doi.none.fl_str_mv |
10.3389/fmed.2020.577609 |
identifier_str_mv |
CARVALHO, Alysson Roncally S. et al. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Frontiers in Medicine, v. 7, p. 1-11, 2020. 2296-858X 10.3389/fmed.2020.577609 |
url |
https://www.arca.fiocruz.br/handle/icict/45829 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/45829/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/45829/2/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf https://www.arca.fiocruz.br/bitstream/icict/45829/3/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txt |
bitstream.checksum.fl_str_mv |
586c046dcfeef936e32f0323bb9a47c0 41c525cc6de2a9e38f24684032a68fff 40448866e994d8c26b585c7484260b5a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813009059688742912 |