COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis

Detalhes bibliográficos
Autor(a) principal: Carvalho, Alysson Roncally S.
Data de Publicação: 2020
Outros Autores: Guimarães, Alan, Werberich, Gabriel Madeira, Castro, Stephane Nery de, Pinto, Joana Sofia F., Schmitt, Willian Rebouças, França, Manuela, Bozza, Fernando Augusto, Guimarães, Bruno Leonardo da Silva, Zin, Walter Araujo, Rodrigues, Rosana Souza
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da FIOCRUZ (ARCA)
Texto Completo: https://www.arca.fiocruz.br/handle/icict/45829
Resumo: Porto University. Centro Hospitalar Universitário Do Porto. Faculty of Medicine. Cardiovascular R&D Center. Porto, Portugal / Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil.
id CRUZ_30e0c295edadade97792e1bdd582e717
oai_identifier_str oai:www.arca.fiocruz.br:icict/45829
network_acronym_str CRUZ
network_name_str Repositório Institucional da FIOCRUZ (ARCA)
repository_id_str 2135
spelling Carvalho, Alysson Roncally S.Guimarães, AlanWerberich, Gabriel MadeiraCastro, Stephane Nery dePinto, Joana Sofia F.Schmitt, Willian RebouçasFrança, ManuelaBozza, Fernando AugustoGuimarães, Bruno Leonardo da SilvaZin, Walter AraujoRodrigues, Rosana Souza2021-01-26T15:35:05Z2021-01-26T15:35:05Z2020CARVALHO, Alysson Roncally S. et al. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Frontiers in Medicine, v. 7, p. 1-11, 2020.2296-858Xhttps://www.arca.fiocruz.br/handle/icict/4582910.3389/fmed.2020.577609engFrontiers MediaCOVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePorto University. Centro Hospitalar Universitário Do Porto. Faculty of Medicine. Cardiovascular R&D Center. Porto, Portugal / Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Departamento de Radiologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Hospital Barra D'Or. Rio de Janeiro, RJ, Brasil.Centro Hospitalar Complexo Universitário Do Porto. Radiology Department. Porto, Portugal.Centro Hospitalar Complexo Universitário Do Porto. Radiology Department. Porto, Portugal.Centro Hospitalar Complexo Universitário Do Porto. Radiology Department. Porto, Portugal / Porto University. Instituto de Ciências Biomédicas Abel Salazar. Porto, Portugal.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Rio de Janeiro, RJ, Brasil / Instituto D'Or de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Hospital Niterói D'Or. Niterói, RJ, Brasil.Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Departamento de Radiologia. Rio de Janeiro, RJ, Brasil / Instituto D'Or de Pesquisa e Educação. Rio de Janeiro, RJ, Brasil.Purpose: This work aims to develop a computer-aided diagnosis (CAD) to quantify the extent of pulmonary involvement (PI) in COVID-19 as well as the radiological patterns referred to as lung opacities in chest computer tomography (CT). Methods: One hundred thirty subjects with COVID-19 pneumonia who underwent chest CT at hospital admission were retrospectively studied (141 sets of CT scan images). Eighty-eight healthy individuals without radiological evidence of acute lung disease served as controls. Two radiologists selected up to four regions of interest (ROI) per patient (totaling 1,475 ROIs) visually regarded as well-aerated regions (472), ground-glass opacity (GGO, 413), crazy paving and linear opacities (CP/LO, 340), and consolidation (250). After balancing with 250 ROIs for each class, the density quantiles (2.5, 25, 50, 75, and 97.5%) of 1,000 ROIs were used to train (700), validate (150), and test (150 ROIs) an artificial neural network (ANN) classifier (60 neurons in a single-hidden-layer architecture). Pulmonary involvement was defined as the sum of GGO, CP/LO, and consolidation volumes divided by total lung volume (TLV), and the cutoff of normality between controls and COVID-19 patients was determined with a receiver operator characteristic (ROC) curve. The severity of pulmonary involvement in COVID-19 patients was also assessed by calculating Z scores relative to the average volume of parenchymal opacities in controls. Thus, COVID-19 cases were classified as mild (<cutoff of normality), moderate (cutoff of normality ≤ pulmonary involvement < Z score 3), and severe pulmonary involvement (Z score ≥3). Results: Cohen's kappa agreement between CAD and radiologist classification was 81% (79-84%, 95% CI). The ROC curve of PI by the ANN presented a threshold of 21.5%, sensitivity of 0.80, specificity of 0.86, AUC of 0.90, accuracy of 0.82, F score of 0.85, and 0.65 Matthews' correlation coefficient. Accordingly, 77 patients were classified as having severe pulmonary involvement reaching 55 ± 13% of the TLV (Z score related to controls ≥3) and presented significantly higher lung weight, serum C-reactive protein concentration, proportion of hospitalization in intensive care units, instances of mechanical ventilation, and case fatality. Conclusion: The proposed CAD aided in detecting and quantifying the extent of pulmonary involvement, helping to phenotype patients with COVID-19 pneumonia.COVID-19Computer-aided diagnosisDeep learningQuantitative chest CT-analysisRadiomicsPneumoniainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-83099https://www.arca.fiocruz.br/bitstream/icict/45829/1/license.txt586c046dcfeef936e32f0323bb9a47c0MD51ORIGINALChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdfChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdfapplication/pdf5311082https://www.arca.fiocruz.br/bitstream/icict/45829/2/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf41c525cc6de2a9e38f24684032a68fffMD52TEXTChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txtChest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txtExtracted texttext/plain46084https://www.arca.fiocruz.br/bitstream/icict/45829/3/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txt40448866e994d8c26b585c7484260b5aMD53icict/458292021-05-24 21:27:32.501oai:www.arca.fiocruz.br:icict/45829Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUw0KDQpGw6FiaW8gTWFycXVlcywgQ1BGOiAxMTMuMTg3Ljg1Ny00MCwgdmluY3VsYWRvIGEgSU5JIC0gSW5zdGl0dXRvIE5hY2lvbmFsIGRlIEluZmVjdG9sb2dpYSBFdmFuZHJvIENoYWdhcwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352021-05-25T00:27:32Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.pt_BR.fl_str_mv COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
title COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
spellingShingle COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
Carvalho, Alysson Roncally S.
COVID-19
Computer-aided diagnosis
Deep learning
Quantitative chest CT-analysis
Radiomics
Pneumonia
title_short COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
title_full COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
title_fullStr COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
title_full_unstemmed COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
title_sort COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis
author Carvalho, Alysson Roncally S.
author_facet Carvalho, Alysson Roncally S.
Guimarães, Alan
Werberich, Gabriel Madeira
Castro, Stephane Nery de
Pinto, Joana Sofia F.
Schmitt, Willian Rebouças
França, Manuela
Bozza, Fernando Augusto
Guimarães, Bruno Leonardo da Silva
Zin, Walter Araujo
Rodrigues, Rosana Souza
author_role author
author2 Guimarães, Alan
Werberich, Gabriel Madeira
Castro, Stephane Nery de
Pinto, Joana Sofia F.
Schmitt, Willian Rebouças
França, Manuela
Bozza, Fernando Augusto
Guimarães, Bruno Leonardo da Silva
Zin, Walter Araujo
Rodrigues, Rosana Souza
author2_role author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Carvalho, Alysson Roncally S.
Guimarães, Alan
Werberich, Gabriel Madeira
Castro, Stephane Nery de
Pinto, Joana Sofia F.
Schmitt, Willian Rebouças
França, Manuela
Bozza, Fernando Augusto
Guimarães, Bruno Leonardo da Silva
Zin, Walter Araujo
Rodrigues, Rosana Souza
dc.subject.en.pt_BR.fl_str_mv COVID-19
Computer-aided diagnosis
Deep learning
Quantitative chest CT-analysis
Radiomics
Pneumonia
topic COVID-19
Computer-aided diagnosis
Deep learning
Quantitative chest CT-analysis
Radiomics
Pneumonia
description Porto University. Centro Hospitalar Universitário Do Porto. Faculty of Medicine. Cardiovascular R&D Center. Porto, Portugal / Universidade Federal do Rio de Janeiro. Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering. Biomedical Engineering Program. Laboratory of Pulmonary Engineering. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Carlos Chagas Filho Institute of Biophysics. Laboratory of Respiration Physiology. Rio de Janeiro, RJ, Brazil.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2021-01-26T15:35:05Z
dc.date.available.fl_str_mv 2021-01-26T15:35:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARVALHO, Alysson Roncally S. et al. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Frontiers in Medicine, v. 7, p. 1-11, 2020.
dc.identifier.uri.fl_str_mv https://www.arca.fiocruz.br/handle/icict/45829
dc.identifier.issn.pt_BR.fl_str_mv 2296-858X
dc.identifier.doi.none.fl_str_mv 10.3389/fmed.2020.577609
identifier_str_mv CARVALHO, Alysson Roncally S. et al. COVID-19 Chest Computed Tomography to Stratify Severity and Disease Extension by Artificial Neural Network Computer-Aided Diagnosis. Frontiers in Medicine, v. 7, p. 1-11, 2020.
2296-858X
10.3389/fmed.2020.577609
url https://www.arca.fiocruz.br/handle/icict/45829
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:Repositório Institucional da FIOCRUZ (ARCA)
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Repositório Institucional da FIOCRUZ (ARCA)
collection Repositório Institucional da FIOCRUZ (ARCA)
bitstream.url.fl_str_mv https://www.arca.fiocruz.br/bitstream/icict/45829/1/license.txt
https://www.arca.fiocruz.br/bitstream/icict/45829/2/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf
https://www.arca.fiocruz.br/bitstream/icict/45829/3/Chest_Fernando_Bozza_etal_INI_2021_COVID-19.pdf.txt
bitstream.checksum.fl_str_mv 586c046dcfeef936e32f0323bb9a47c0
41c525cc6de2a9e38f24684032a68fff
40448866e994d8c26b585c7484260b5a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv repositorio.arca@fiocruz.br
_version_ 1813009059688742912