Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients

Detalhes bibliográficos
Autor(a) principal: Andrade, Hugo Boechat
Data de Publicação: 2021
Outros Autores: Silva, Ivan Rocha Ferreira da, Sim, Justin Lee, Mello-Neto, José Henrique, Theodoro, Pedro Henrique Nascimento, Silva, Mayara Secco Torres da, Varela, Margareth Catoia, Ramos, Grazielle Viana, Silva, Aline Ramos da, Bozza, Fernando Augusto, Soares, Jesus, Belay, Ermias D., Sejvar, James J., Cerbino-Neto, José, Japiassú, André Miguel
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da FIOCRUZ (ARCA)
Texto Completo: https://www.arca.fiocruz.br/handle/icict/50527
Resumo: Background: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05). Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001). Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity.
id CRUZ_44233d5602da69e47f1f66fb5e5c0d11
oai_identifier_str oai:www.arca.fiocruz.br:icict/50527
network_acronym_str CRUZ
network_name_str Repositório Institucional da FIOCRUZ (ARCA)
repository_id_str 2135
spelling Andrade, Hugo BoechatSilva, Ivan Rocha Ferreira daSim, Justin LeeMello-Neto, José HenriqueTheodoro, Pedro Henrique NascimentoSilva, Mayara Secco Torres daVarela, Margareth CatoiaRamos, Grazielle VianaSilva, Aline Ramos daBozza, Fernando AugustoSoares, JesusBelay, Ermias D.Sejvar, James J.Cerbino-Neto, JoséJapiassú, André Miguel2021-12-27T22:21:05Z2021-12-27T22:21:05Z2021ANDRADE, Hugo Boechat et al. Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. PloS one, v. 16, n. 11, p. 1-14, 20211932-6203https://www.arca.fiocruz.br/handle/icict/5052710.1371/journal.pone.0260551engPublic Library of ScienceCentral nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patientsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBackground: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05). Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001). Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil / Universidade Federal Fluminense. Instituto Biomédico. Setor de Doenças Sexualmente Transmissíveis. Niterói, RJ, Brasil.Rush University Medical Center. Department of Neurological Sciences. Chicago, IL, United States of America.Rush University Medical Center. Department of Neurological Sciences. Chicago, IL, United States of America.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa de Imunização e Vigilância Sanitária. Rio de Janeiro, RJ, Brasil.Instituto D'Or de Pesquisa e Educação. Departamento de Cuidados Críticos. Rio de Janeiro, RJ, Brasil.Instituto D'Or de Pesquisa e Educação. Departamento de Cuidados Críticos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil / Instituto D'Or de Pesquisa e Educação. Departamento de Cuidados Críticos. Rio de Janeiro, RJ, Brasil.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. Division of High-Consequence Pathology and Pathogens. Atlanta, GA, United States of America.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. Division of High-Consequence Pathology and Pathogens. Atlanta, GA, United States of America.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. Division of High-Consequence Pathology and Pathogens. Atlanta, GA, United States of America.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa de Imunização e Vigilância Sanitária. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Central nervous system infectionsIntensive care unitMedical risk factorsCerebrospinal fluidEncephalitisFeversinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-83099https://www.arca.fiocruz.br/bitstream/icict/50527/1/license.txt586c046dcfeef936e32f0323bb9a47c0MD51ORIGINALCentral_Hugo_Andrade_etal_INI_2021.pdfCentral_Hugo_Andrade_etal_INI_2021.pdfapplication/pdf850077https://www.arca.fiocruz.br/bitstream/icict/50527/2/Central_Hugo_Andrade_etal_INI_2021.pdf8d2ca3d34cd24dd48db07567337f5e81MD52icict/505272021-12-27 19:21:05.446oai:www.arca.fiocruz.br:icict/50527Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUw0KDQpGw6FiaW8gTWFycXVlcywgQ1BGOiAxMTMuMTg3Ljg1Ny00MCwgdmluY3VsYWRvIGEgSU5JIC0gSW5zdGl0dXRvIE5hY2lvbmFsIGRlIEluZmVjdG9sb2dpYSBFdmFuZHJvIENoYWdhcwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352021-12-27T22:21:05Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.pt_BR.fl_str_mv Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
spellingShingle Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
Andrade, Hugo Boechat
Central nervous system infections
Intensive care unit
Medical risk factors
Cerebrospinal fluid
Encephalitis
Fevers
title_short Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_full Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_fullStr Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_full_unstemmed Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
title_sort Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
author Andrade, Hugo Boechat
author_facet Andrade, Hugo Boechat
Silva, Ivan Rocha Ferreira da
Sim, Justin Lee
Mello-Neto, José Henrique
Theodoro, Pedro Henrique Nascimento
Silva, Mayara Secco Torres da
Varela, Margareth Catoia
Ramos, Grazielle Viana
Silva, Aline Ramos da
Bozza, Fernando Augusto
Soares, Jesus
Belay, Ermias D.
Sejvar, James J.
Cerbino-Neto, José
Japiassú, André Miguel
author_role author
author2 Silva, Ivan Rocha Ferreira da
Sim, Justin Lee
Mello-Neto, José Henrique
Theodoro, Pedro Henrique Nascimento
Silva, Mayara Secco Torres da
Varela, Margareth Catoia
Ramos, Grazielle Viana
Silva, Aline Ramos da
Bozza, Fernando Augusto
Soares, Jesus
Belay, Ermias D.
Sejvar, James J.
Cerbino-Neto, José
Japiassú, André Miguel
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Andrade, Hugo Boechat
Silva, Ivan Rocha Ferreira da
Sim, Justin Lee
Mello-Neto, José Henrique
Theodoro, Pedro Henrique Nascimento
Silva, Mayara Secco Torres da
Varela, Margareth Catoia
Ramos, Grazielle Viana
Silva, Aline Ramos da
Bozza, Fernando Augusto
Soares, Jesus
Belay, Ermias D.
Sejvar, James J.
Cerbino-Neto, José
Japiassú, André Miguel
dc.subject.en.pt_BR.fl_str_mv Central nervous system infections
Intensive care unit
Medical risk factors
Cerebrospinal fluid
Encephalitis
Fevers
topic Central nervous system infections
Intensive care unit
Medical risk factors
Cerebrospinal fluid
Encephalitis
Fevers
description Background: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05). Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001). Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-12-27T22:21:05Z
dc.date.available.fl_str_mv 2021-12-27T22:21:05Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv ANDRADE, Hugo Boechat et al. Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. PloS one, v. 16, n. 11, p. 1-14, 2021
dc.identifier.uri.fl_str_mv https://www.arca.fiocruz.br/handle/icict/50527
dc.identifier.issn.pt_BR.fl_str_mv 1932-6203
dc.identifier.doi.none.fl_str_mv 10.1371/journal.pone.0260551
identifier_str_mv ANDRADE, Hugo Boechat et al. Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. PloS one, v. 16, n. 11, p. 1-14, 2021
1932-6203
10.1371/journal.pone.0260551
url https://www.arca.fiocruz.br/handle/icict/50527
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:Repositório Institucional da FIOCRUZ (ARCA)
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Repositório Institucional da FIOCRUZ (ARCA)
collection Repositório Institucional da FIOCRUZ (ARCA)
bitstream.url.fl_str_mv https://www.arca.fiocruz.br/bitstream/icict/50527/1/license.txt
https://www.arca.fiocruz.br/bitstream/icict/50527/2/Central_Hugo_Andrade_etal_INI_2021.pdf
bitstream.checksum.fl_str_mv 586c046dcfeef936e32f0323bb9a47c0
8d2ca3d34cd24dd48db07567337f5e81
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv repositorio.arca@fiocruz.br
_version_ 1813009053114171392