Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/50527 |
Resumo: | Background: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05). Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001). Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity. |
id |
CRUZ_44233d5602da69e47f1f66fb5e5c0d11 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/50527 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Andrade, Hugo BoechatSilva, Ivan Rocha Ferreira daSim, Justin LeeMello-Neto, José HenriqueTheodoro, Pedro Henrique NascimentoSilva, Mayara Secco Torres daVarela, Margareth CatoiaRamos, Grazielle VianaSilva, Aline Ramos daBozza, Fernando AugustoSoares, JesusBelay, Ermias D.Sejvar, James J.Cerbino-Neto, JoséJapiassú, André Miguel2021-12-27T22:21:05Z2021-12-27T22:21:05Z2021ANDRADE, Hugo Boechat et al. Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. PloS one, v. 16, n. 11, p. 1-14, 20211932-6203https://www.arca.fiocruz.br/handle/icict/5052710.1371/journal.pone.0260551engPublic Library of ScienceCentral nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patientsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleBackground: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05). Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001). Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil / Universidade Federal Fluminense. Instituto Biomédico. Setor de Doenças Sexualmente Transmissíveis. Niterói, RJ, Brasil.Rush University Medical Center. Department of Neurological Sciences. Chicago, IL, United States of America.Rush University Medical Center. Department of Neurological Sciences. Chicago, IL, United States of America.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa de Imunização e Vigilância Sanitária. Rio de Janeiro, RJ, Brasil.Instituto D'Or de Pesquisa e Educação. Departamento de Cuidados Críticos. Rio de Janeiro, RJ, Brasil.Instituto D'Or de Pesquisa e Educação. Departamento de Cuidados Críticos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil / Instituto D'Or de Pesquisa e Educação. Departamento de Cuidados Críticos. Rio de Janeiro, RJ, Brasil.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. Division of High-Consequence Pathology and Pathogens. Atlanta, GA, United States of America.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. Division of High-Consequence Pathology and Pathogens. Atlanta, GA, United States of America.Centers for Disease Control and Prevention. National Center for Emerging and Zoonotic Infectious Diseases. Division of High-Consequence Pathology and Pathogens. Atlanta, GA, United States of America.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa de Imunização e Vigilância Sanitária. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Unidade de Tratamento Intensivo. Rio de Janeiro, RJ, Brasil.Central nervous system infectionsIntensive care unitMedical risk factorsCerebrospinal fluidEncephalitisFeversinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-83099https://www.arca.fiocruz.br/bitstream/icict/50527/1/license.txt586c046dcfeef936e32f0323bb9a47c0MD51ORIGINALCentral_Hugo_Andrade_etal_INI_2021.pdfCentral_Hugo_Andrade_etal_INI_2021.pdfapplication/pdf850077https://www.arca.fiocruz.br/bitstream/icict/50527/2/Central_Hugo_Andrade_etal_INI_2021.pdf8d2ca3d34cd24dd48db07567337f5e81MD52icict/505272021-12-27 19:21:05.446oai:www.arca.fiocruz.br:icict/50527Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUw0KDQpGw6FiaW8gTWFycXVlcywgQ1BGOiAxMTMuMTg3Ljg1Ny00MCwgdmluY3VsYWRvIGEgSU5JIC0gSW5zdGl0dXRvIE5hY2lvbmFsIGRlIEluZmVjdG9sb2dpYSBFdmFuZHJvIENoYWdhcwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352021-12-27T22:21:05Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.pt_BR.fl_str_mv |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
spellingShingle |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients Andrade, Hugo Boechat Central nervous system infections Intensive care unit Medical risk factors Cerebrospinal fluid Encephalitis Fevers |
title_short |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_full |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_fullStr |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_full_unstemmed |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
title_sort |
Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients |
author |
Andrade, Hugo Boechat |
author_facet |
Andrade, Hugo Boechat Silva, Ivan Rocha Ferreira da Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Silva, Mayara Secco Torres da Varela, Margareth Catoia Ramos, Grazielle Viana Silva, Aline Ramos da Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel |
author_role |
author |
author2 |
Silva, Ivan Rocha Ferreira da Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Silva, Mayara Secco Torres da Varela, Margareth Catoia Ramos, Grazielle Viana Silva, Aline Ramos da Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel |
author2_role |
author author author author author author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Hugo Boechat Silva, Ivan Rocha Ferreira da Sim, Justin Lee Mello-Neto, José Henrique Theodoro, Pedro Henrique Nascimento Silva, Mayara Secco Torres da Varela, Margareth Catoia Ramos, Grazielle Viana Silva, Aline Ramos da Bozza, Fernando Augusto Soares, Jesus Belay, Ermias D. Sejvar, James J. Cerbino-Neto, José Japiassú, André Miguel |
dc.subject.en.pt_BR.fl_str_mv |
Central nervous system infections Intensive care unit Medical risk factors Cerebrospinal fluid Encephalitis Fevers |
topic |
Central nervous system infections Intensive care unit Medical risk factors Cerebrospinal fluid Encephalitis Fevers |
description |
Background: Central nervous system infections (CNSI) are diseases with high morbidity and mortality, and their diagnosis in the intensive care environment can be challenging. Objective: To develop and validate a diagnostic model to quickly screen intensive care patients with suspected CNSI using readily available clinical data. Methods: Derivation cohort: 783 patients admitted to an infectious diseases intensive care unit (ICU) in Oswaldo Cruz Foundation, Rio de Janeiro RJ, Brazil, for any reason, between 01/01/2012 and 06/30/2019, with a prevalence of 97 (12.4%) CNSI cases. Validation cohort 1: 163 patients prospectively collected, between 07/01/2019 and 07/01/2020, from the same ICU, with 15 (9.2%) CNSI cases. Validation cohort 2: 7,270 patients with 88 CNSI (1.21%) admitted to a neuro ICU in Chicago, IL, USA between 01/01/2014 and 06/30/2019. Prediction model: Multivariate logistic regression analysis was performed to construct the model, and Receiver Operating Characteristic (ROC) curve analysis was used for model validation. Eight predictors-age <56 years old, cerebrospinal fluid white blood cell count >2 cells/mm3, fever (≥38°C/100.4°F), focal neurologic deficit, Glasgow Coma Scale <14 points, AIDS/HIV, and seizure-were included in the development diagnostic model (P<0.05). Results: The pool data's model had an Area Under the Receiver Operating Characteristics (AUC) curve of 0.892 (95% confidence interval 0.864-0.921, P<0.0001). Conclusions: A promising and straightforward screening tool for central nervous system infections, with few and readily available clinical variables, was developed and had good accuracy, with internal and external validity. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-12-27T22:21:05Z |
dc.date.available.fl_str_mv |
2021-12-27T22:21:05Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ANDRADE, Hugo Boechat et al. Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. PloS one, v. 16, n. 11, p. 1-14, 2021 |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/50527 |
dc.identifier.issn.pt_BR.fl_str_mv |
1932-6203 |
dc.identifier.doi.none.fl_str_mv |
10.1371/journal.pone.0260551 |
identifier_str_mv |
ANDRADE, Hugo Boechat et al. Central nervous system infection in the intensive care unit: Development and validation of a multi-parameter diagnostic prediction tool to identify suspected patients. PloS one, v. 16, n. 11, p. 1-14, 2021 1932-6203 10.1371/journal.pone.0260551 |
url |
https://www.arca.fiocruz.br/handle/icict/50527 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/50527/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/50527/2/Central_Hugo_Andrade_etal_INI_2021.pdf |
bitstream.checksum.fl_str_mv |
586c046dcfeef936e32f0323bb9a47c0 8d2ca3d34cd24dd48db07567337f5e81 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813009053114171392 |