Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/59918 |
Resumo: | O objetivo deste estudo foi identificar como a Inteligência Artificial (IA) vem sendo utilizada para a pesquisa translacional no contexto da Covid-19. Foi realizada uma revisão rápida para identificar o uso de técnicas de IA na translação de tecnologias para o enfrentamento da Covid-19. Empregou-se estratégia de busca com base em termos MeSH e seus respectivos sinônimos em sete bases de dados. Dos 59 artigos identificados, oito foram incluídos. Foram identificadas 11 experiências que usaram IA para a pesquisa translacional em Covid-19: predição de eficácia medicamentosa; predição de patogenicidade do Sars-CoV-2; diagnóstico de imagem para Covid-19; predição de incidência de Covid-19; estimativas de impacto da Covid-19 na sociedade; automatização de sanitização de ambientes hospitalares e clínicos; rastreio de pessoas infectadas e possivelmente infectadas; monitoramento do uso de máscaras; predição de gravidade de pacientes; estratificação de risco do paciente; e predição de recursos hospitalares. A pesquisa translacional pode ajudar no desenvolvimento produtivo e industrial em saúde, especialmente quando apoiada em métodos de IA, uma ferramenta cada vez mais importante, sobretudo quando se discute a Quarta Revolução Industrial e suas aplicações na saúde. |
id |
CRUZ_44987c1ebbea9f94f958055033ca8e67 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/59918 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Ramos, Maíra CatharinaGomes, Dalila FernandesMello, Nicole Freitas deSilva, Everton Nunes daBarreto, Jorge Otávio MaiaShimizu, Helena Eri2023-08-08T00:28:33Z2023-08-08T00:28:33Z2022RAMOS, Maíra Catharina et al. Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida. Saúde debate, Rio de Janeiro, v. 46, n. 135, p. oct./dec. 2022.0103-1104https://www.arca.fiocruz.br/handle/icict/5991810.1590/0103-11042022135182358-2898O objetivo deste estudo foi identificar como a Inteligência Artificial (IA) vem sendo utilizada para a pesquisa translacional no contexto da Covid-19. Foi realizada uma revisão rápida para identificar o uso de técnicas de IA na translação de tecnologias para o enfrentamento da Covid-19. Empregou-se estratégia de busca com base em termos MeSH e seus respectivos sinônimos em sete bases de dados. Dos 59 artigos identificados, oito foram incluídos. Foram identificadas 11 experiências que usaram IA para a pesquisa translacional em Covid-19: predição de eficácia medicamentosa; predição de patogenicidade do Sars-CoV-2; diagnóstico de imagem para Covid-19; predição de incidência de Covid-19; estimativas de impacto da Covid-19 na sociedade; automatização de sanitização de ambientes hospitalares e clínicos; rastreio de pessoas infectadas e possivelmente infectadas; monitoramento do uso de máscaras; predição de gravidade de pacientes; estratificação de risco do paciente; e predição de recursos hospitalares. A pesquisa translacional pode ajudar no desenvolvimento produtivo e industrial em saúde, especialmente quando apoiada em métodos de IA, uma ferramenta cada vez mais importante, sobretudo quando se discute a Quarta Revolução Industrial e suas aplicações na saúde.The objective of this study was to identify how Artificial Intelligence (AI) has been used for translational research in the context of COVID-19. A rapid review was carried out to identify the use of AI techniques in the translation of technologies to face COVID-19. A search strategy was used based on MeSH terms and their respective synonyms in seven databases. Of the 59 articles identified, eight were included. We identified 11 experiments that used AI for translational research in Covid-19: prediction of drug efficacy; predicting the pathogenicity of SARS-CoV-2; imaging diagnosis for COVID-19; predicting the incidence of COVID-19; estimates of the impact of COVID-19 on society; automation of sanitizing hospital and clinical environments; screening of infected and possibly infected people; monitoring the use of masks; prediction of patient severity; patient risk stratification; and prediction of hospital resources. Translational research can help in productive and industrial development in health, especially when supported by AI methods, an increasingly important tool, especially when discussing the Fourth Industrial Revolution and its applications in health.Fundação Oswaldo Cruz. Fiocruz Brasília. Brasília, DF, Brasil / Universidade de Brasília. Brasília, DF, Brasil.Universidade de Brasília. Brasília, DF, Brasil.Universidade de Brasília. Brasília, DF, Brasil.Universidade de Brasília. Brasília, DF, Brasil.Fundação Oswaldo Cruz. Fiocruz Brasília. Brasília, DF, Brasil / Universidade de Brasília. Brasília, DF, Brasil.Universidade de Brasília. Brasília, DF, Brasil.porCentro Brasileiro de Estudos de SaúdeArtificial IntelligenceCOVID-19Pesquisa translacionalInteligência artificialAprendizado de máquinaCOVID-19Translational research, biomedicalArtificial intelligenceMachine learningCOVID-19Pesquisa Translacional BiomédicaCOVID-19Inteligência ArtificialBig Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápidaBig Data and artificial intelligence for translational research in COVID-19: a rapid reviewinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/59918/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALJorge_Barreto_etal_FiocruzBSB_2022.pdfJorge_Barreto_etal_FiocruzBSB_2022.pdfapplication/pdf195975https://www.arca.fiocruz.br/bitstream/icict/59918/2/Jorge_Barreto_etal_FiocruzBSB_2022.pdf4c06c5fbb7d06b11768a0ceaf5441953MD52icict/599182023-08-07 21:28:34.25oai:www.arca.fiocruz.br:icict/59918Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352023-08-08T00:28:34Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.en_US.fl_str_mv |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
dc.title.alternative.en_US.fl_str_mv |
Big Data and artificial intelligence for translational research in COVID-19: a rapid review |
title |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
spellingShingle |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida Ramos, Maíra Catharina Artificial Intelligence COVID-19 Pesquisa translacional Inteligência artificial Aprendizado de máquina COVID-19 Translational research, biomedical Artificial intelligence Machine learning COVID-19 Pesquisa Translacional Biomédica COVID-19 Inteligência Artificial |
title_short |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
title_full |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
title_fullStr |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
title_full_unstemmed |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
title_sort |
Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida |
author |
Ramos, Maíra Catharina |
author_facet |
Ramos, Maíra Catharina Gomes, Dalila Fernandes Mello, Nicole Freitas de Silva, Everton Nunes da Barreto, Jorge Otávio Maia Shimizu, Helena Eri |
author_role |
author |
author2 |
Gomes, Dalila Fernandes Mello, Nicole Freitas de Silva, Everton Nunes da Barreto, Jorge Otávio Maia Shimizu, Helena Eri |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Ramos, Maíra Catharina Gomes, Dalila Fernandes Mello, Nicole Freitas de Silva, Everton Nunes da Barreto, Jorge Otávio Maia Shimizu, Helena Eri |
dc.subject.mesh.en_US.fl_str_mv |
Artificial Intelligence COVID-19 |
topic |
Artificial Intelligence COVID-19 Pesquisa translacional Inteligência artificial Aprendizado de máquina COVID-19 Translational research, biomedical Artificial intelligence Machine learning COVID-19 Pesquisa Translacional Biomédica COVID-19 Inteligência Artificial |
dc.subject.other.en_US.fl_str_mv |
Pesquisa translacional Inteligência artificial Aprendizado de máquina COVID-19 |
dc.subject.en.en_US.fl_str_mv |
Translational research, biomedical Artificial intelligence Machine learning COVID-19 |
dc.subject.decs.en_US.fl_str_mv |
Pesquisa Translacional Biomédica COVID-19 Inteligência Artificial |
description |
O objetivo deste estudo foi identificar como a Inteligência Artificial (IA) vem sendo utilizada para a pesquisa translacional no contexto da Covid-19. Foi realizada uma revisão rápida para identificar o uso de técnicas de IA na translação de tecnologias para o enfrentamento da Covid-19. Empregou-se estratégia de busca com base em termos MeSH e seus respectivos sinônimos em sete bases de dados. Dos 59 artigos identificados, oito foram incluídos. Foram identificadas 11 experiências que usaram IA para a pesquisa translacional em Covid-19: predição de eficácia medicamentosa; predição de patogenicidade do Sars-CoV-2; diagnóstico de imagem para Covid-19; predição de incidência de Covid-19; estimativas de impacto da Covid-19 na sociedade; automatização de sanitização de ambientes hospitalares e clínicos; rastreio de pessoas infectadas e possivelmente infectadas; monitoramento do uso de máscaras; predição de gravidade de pacientes; estratificação de risco do paciente; e predição de recursos hospitalares. A pesquisa translacional pode ajudar no desenvolvimento produtivo e industrial em saúde, especialmente quando apoiada em métodos de IA, uma ferramenta cada vez mais importante, sobretudo quando se discute a Quarta Revolução Industrial e suas aplicações na saúde. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022 |
dc.date.accessioned.fl_str_mv |
2023-08-08T00:28:33Z |
dc.date.available.fl_str_mv |
2023-08-08T00:28:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RAMOS, Maíra Catharina et al. Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida. Saúde debate, Rio de Janeiro, v. 46, n. 135, p. oct./dec. 2022. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/59918 |
dc.identifier.issn.en_US.fl_str_mv |
0103-1104 |
dc.identifier.doi.none.fl_str_mv |
10.1590/0103-1104202213518 |
dc.identifier.eissn.none.fl_str_mv |
2358-2898 |
identifier_str_mv |
RAMOS, Maíra Catharina et al. Big Data e inteligência artificial para pesquisa translacional na Covid-19: revisão rápida. Saúde debate, Rio de Janeiro, v. 46, n. 135, p. oct./dec. 2022. 0103-1104 10.1590/0103-1104202213518 2358-2898 |
url |
https://www.arca.fiocruz.br/handle/icict/59918 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Centro Brasileiro de Estudos de Saúde |
publisher.none.fl_str_mv |
Centro Brasileiro de Estudos de Saúde |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/59918/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/59918/2/Jorge_Barreto_etal_FiocruzBSB_2022.pdf |
bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 4c06c5fbb7d06b11768a0ceaf5441953 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813008945090920448 |