Searching for TPP riboswitch in the human genome and comparison with others from different species

Detalhes bibliográficos
Autor(a) principal: Santos, Deborah Antunes dos
Data de Publicação: 2018
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da FIOCRUZ (ARCA)
Texto Completo: https://www.arca.fiocruz.br/handle/icict/29292
Resumo: Riboswitches são sensores de RNA que afetam os processos pós-transcricionais através de sua capacidade de se conectar a metabólitos. A classe de tiamina pirofosfato (TPP) riboswitch é a mais difundida entre os riboswitches ocorrendo nos três reinos da vida. Mesmo controlando diferentes genes envolvidos na síntese ou transporte da tiamina e seus derivados fosforilados em bactérias, archaea, fungos e plantas, o aptâmero de TPP possui uma estrutura conservada. Riboswitches são considerados alvos potenciais para drogas antibióticas. A piritiamina, um análogo de tiamina, foi demonstrado ser tóxico para bactérias e fungos, tendo TPP riboswitches como alvos e, assim, reprimindo a biossíntese de tiamina. Portanto, torna-se essencial investigar a existência de riboswitches no genoma humano para evitar efeitos adversos. Neste estudo, visamos compreender o comportamento funcional de TPP riboswitches de bactérias e plantas, baseado em suas estruturas cristalográficas (TPPswec e TPPswat, respectivamente), nos estados apo e holo em solução aquosa. Adicionalmente, buscamos candidatos a TPP riboswitch no genoma humano, propusemos modelos 3D, e analisamos o comportamento estrutural dos candidatos humanos comparando com as estruturas cristalográficas disponíveis de outras espécies Uma combinação de abordagens computacionais, envolvendo Bioinformática, Modelagem Comparativa, Simulações de Dinâmica Molecular e Análise de Redes, possibilitou encontrar diferenças no comportamento estrutural dos TPP riboswitches em espécies de bactérias e plantas, juntamente com a identificação de um potencial candidato para TPP riboswitch no genoma humano. Nossos resultados sugerem que diferentes interações no microambiente ao redor do nucleotídeo U36 de TPPswec (e U35 em TPPswat) podem estar relacionadas a distintas respostas ao TPP. A análise de redes mostrou que pequenas diferenças estruturais no aptâmero permitem uma comunicação intramolecular aprimorada na presença de TPP em TPPswec, mas não em TPPswat. Os TPP riboswitches de plantas apresentam mecanismos de regulação mais sutis e lentos que as bactérias. Interessantemente, um potencial candidato a TPP riboswitch no genoma humano foi identificado no gene FBLN2. Dos três modelos construídos, dois mantiveram interações específicas do RNA com TPP: os modelos CANtrunc e CANcomp2 mantiveram-se conectados ao TPP através de ligações essenciais específicas com o anel de aminopirimidina do TPP. No geral, o gene FBLN2 pode ser considerado como um possível candidato a TPP riboswitch.
id CRUZ_605a98c42fdeaa0e580d94a71cd1bab3
oai_identifier_str oai:www.arca.fiocruz.br:icict/29292
network_acronym_str CRUZ
network_name_str Repositório Institucional da FIOCRUZ (ARCA)
repository_id_str 2135
spelling Santos, Deborah Antunes dosCaffarena, Ernesto RaulPassetti, Fabio2018-10-03T16:32:22Z2018-10-03T16:32:22Z2018SANTOS, Deborah Antunes dos. Searching for TPP riboswitch in the human genome and comparison with others from different species. 2018. 117 f. Tese (Doutorado em Biologia Computacional e Sistemas)-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 2018.https://www.arca.fiocruz.br/handle/icict/29292Riboswitches são sensores de RNA que afetam os processos pós-transcricionais através de sua capacidade de se conectar a metabólitos. A classe de tiamina pirofosfato (TPP) riboswitch é a mais difundida entre os riboswitches ocorrendo nos três reinos da vida. Mesmo controlando diferentes genes envolvidos na síntese ou transporte da tiamina e seus derivados fosforilados em bactérias, archaea, fungos e plantas, o aptâmero de TPP possui uma estrutura conservada. Riboswitches são considerados alvos potenciais para drogas antibióticas. A piritiamina, um análogo de tiamina, foi demonstrado ser tóxico para bactérias e fungos, tendo TPP riboswitches como alvos e, assim, reprimindo a biossíntese de tiamina. Portanto, torna-se essencial investigar a existência de riboswitches no genoma humano para evitar efeitos adversos. Neste estudo, visamos compreender o comportamento funcional de TPP riboswitches de bactérias e plantas, baseado em suas estruturas cristalográficas (TPPswec e TPPswat, respectivamente), nos estados apo e holo em solução aquosa. Adicionalmente, buscamos candidatos a TPP riboswitch no genoma humano, propusemos modelos 3D, e analisamos o comportamento estrutural dos candidatos humanos comparando com as estruturas cristalográficas disponíveis de outras espécies Uma combinação de abordagens computacionais, envolvendo Bioinformática, Modelagem Comparativa, Simulações de Dinâmica Molecular e Análise de Redes, possibilitou encontrar diferenças no comportamento estrutural dos TPP riboswitches em espécies de bactérias e plantas, juntamente com a identificação de um potencial candidato para TPP riboswitch no genoma humano. Nossos resultados sugerem que diferentes interações no microambiente ao redor do nucleotídeo U36 de TPPswec (e U35 em TPPswat) podem estar relacionadas a distintas respostas ao TPP. A análise de redes mostrou que pequenas diferenças estruturais no aptâmero permitem uma comunicação intramolecular aprimorada na presença de TPP em TPPswec, mas não em TPPswat. Os TPP riboswitches de plantas apresentam mecanismos de regulação mais sutis e lentos que as bactérias. Interessantemente, um potencial candidato a TPP riboswitch no genoma humano foi identificado no gene FBLN2. Dos três modelos construídos, dois mantiveram interações específicas do RNA com TPP: os modelos CANtrunc e CANcomp2 mantiveram-se conectados ao TPP através de ligações essenciais específicas com o anel de aminopirimidina do TPP. No geral, o gene FBLN2 pode ser considerado como um possível candidato a TPP riboswitch.Riboswitches are RNA sensors that affect post-transcriptional processes through their ability to connect to small molecules. TPP riboswitch class is the most widespread riboswitch occurring in all three kingdoms of life. Even controlling different genes involved in the synthesis or transport of thiamine and its phosphorylated derivatives in bacteria, archaea, fungi, and plants, the TPP aptamer has a conserved structure. Riboswitches are considered potential targets for antibiotic drugs. The pyrithiamine, a thiamine analogue, has been determined to be toxic to bacteria and fungi, targeting TPP riboswitches and thereby repressing thiamine biosynthesis. Thus, it becomes essential to investigate the existence of riboswitches in the human genome to avoid adverse effects. In this study, we aimed at understanding the functional behavior of TPP riboswitches from bacteria and plant, based on their crystallographic structures (TPPswec and TPPswat, respectively), in the apo and holo states, in aqueous solution. Additionally, we searched for candidates for TPP riboswitch in the human genome, proposed 3D models, and analyzed the structural behavior of human candidates and compared them to the available crystallographic structures from other species A combination of computational approaches, involving Bioinformatics, Comparative Modeling, Molecular Dynamics Simulations and Network Analysis, made possible to find out slight differences in the structural behavior of TPP riboswitches in bacteria and plants species along with the identification of a potential candidate for TPP riboswitch in the human genome. Our results suggested that distinct interactions in the microenvironment surrounding nucleotide U36 of TPPswec (and U35 in TPPswat) might be related to different responses to TPP. The networking analysis showed that minor structural differences in the aptamer enable enhanced intramolecular communication in the presence of TPP in TPPswec, but not in TPPswat. TPP riboswitches of plants present subtler and slower regulation mechanisms than bacteria. Strikingly, a potential candidate for TPP riboswitch in the human genome was identified in FBLN2 gene. Out of the three models created, two maintained specific RNA interactions with TPP: CANtrunc and CANcomp2 models maintained connected to TPP through specific essential bonds with the aminopyrimidine ring of TPP. Globally, the FBLN2 gene can be regarded as a possible candidate for TPP riboswitch.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Rio de Janeiro, RJ, Brasil.porGenoma HumanoEstrutura MolecularRiboswitchSearching for TPP riboswitch in the human genome and comparison with others from different speciesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis2018Instituto Oswaldo CruzFundação Oswaldo CruzRio de JaneiroPrograma de Pós-Graduação em Biologia Computacional e Sistemasinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txttext/plain1748https://www.arca.fiocruz.br/bitstream/icict/29292/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALdeborah_santos_ioc_dout_2018.pdfapplication/pdf13557595https://www.arca.fiocruz.br/bitstream/icict/29292/2/deborah_santos_ioc_dout_2018.pdff2c51475d6e684fdc8530c03edc745b7MD52TEXTdeborah_santos_ioc_dout_2018.pdf.txtdeborah_santos_ioc_dout_2018.pdf.txtExtracted texttext/plain178084https://www.arca.fiocruz.br/bitstream/icict/29292/3/deborah_santos_ioc_dout_2018.pdf.txt1e6309c1f44cbaa1e5234a95e53c3b92MD53icict/292922022-06-24 13:10:50.432oai:www.arca.fiocruz.br:icict/29292Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352022-06-24T16:10:50Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.pt_BR.fl_str_mv Searching for TPP riboswitch in the human genome and comparison with others from different species
title Searching for TPP riboswitch in the human genome and comparison with others from different species
spellingShingle Searching for TPP riboswitch in the human genome and comparison with others from different species
Santos, Deborah Antunes dos
Genoma Humano
Estrutura Molecular
Riboswitch
title_short Searching for TPP riboswitch in the human genome and comparison with others from different species
title_full Searching for TPP riboswitch in the human genome and comparison with others from different species
title_fullStr Searching for TPP riboswitch in the human genome and comparison with others from different species
title_full_unstemmed Searching for TPP riboswitch in the human genome and comparison with others from different species
title_sort Searching for TPP riboswitch in the human genome and comparison with others from different species
author Santos, Deborah Antunes dos
author_facet Santos, Deborah Antunes dos
author_role author
dc.contributor.author.fl_str_mv Santos, Deborah Antunes dos
dc.contributor.advisor1.fl_str_mv Caffarena, Ernesto Raul
Passetti, Fabio
contributor_str_mv Caffarena, Ernesto Raul
Passetti, Fabio
dc.subject.other.pt_BR.fl_str_mv Genoma Humano
Estrutura Molecular
topic Genoma Humano
Estrutura Molecular
Riboswitch
dc.subject.decs.pt_BR.fl_str_mv Riboswitch
description Riboswitches são sensores de RNA que afetam os processos pós-transcricionais através de sua capacidade de se conectar a metabólitos. A classe de tiamina pirofosfato (TPP) riboswitch é a mais difundida entre os riboswitches ocorrendo nos três reinos da vida. Mesmo controlando diferentes genes envolvidos na síntese ou transporte da tiamina e seus derivados fosforilados em bactérias, archaea, fungos e plantas, o aptâmero de TPP possui uma estrutura conservada. Riboswitches são considerados alvos potenciais para drogas antibióticas. A piritiamina, um análogo de tiamina, foi demonstrado ser tóxico para bactérias e fungos, tendo TPP riboswitches como alvos e, assim, reprimindo a biossíntese de tiamina. Portanto, torna-se essencial investigar a existência de riboswitches no genoma humano para evitar efeitos adversos. Neste estudo, visamos compreender o comportamento funcional de TPP riboswitches de bactérias e plantas, baseado em suas estruturas cristalográficas (TPPswec e TPPswat, respectivamente), nos estados apo e holo em solução aquosa. Adicionalmente, buscamos candidatos a TPP riboswitch no genoma humano, propusemos modelos 3D, e analisamos o comportamento estrutural dos candidatos humanos comparando com as estruturas cristalográficas disponíveis de outras espécies Uma combinação de abordagens computacionais, envolvendo Bioinformática, Modelagem Comparativa, Simulações de Dinâmica Molecular e Análise de Redes, possibilitou encontrar diferenças no comportamento estrutural dos TPP riboswitches em espécies de bactérias e plantas, juntamente com a identificação de um potencial candidato para TPP riboswitch no genoma humano. Nossos resultados sugerem que diferentes interações no microambiente ao redor do nucleotídeo U36 de TPPswec (e U35 em TPPswat) podem estar relacionadas a distintas respostas ao TPP. A análise de redes mostrou que pequenas diferenças estruturais no aptâmero permitem uma comunicação intramolecular aprimorada na presença de TPP em TPPswec, mas não em TPPswat. Os TPP riboswitches de plantas apresentam mecanismos de regulação mais sutis e lentos que as bactérias. Interessantemente, um potencial candidato a TPP riboswitch no genoma humano foi identificado no gene FBLN2. Dos três modelos construídos, dois mantiveram interações específicas do RNA com TPP: os modelos CANtrunc e CANcomp2 mantiveram-se conectados ao TPP através de ligações essenciais específicas com o anel de aminopirimidina do TPP. No geral, o gene FBLN2 pode ser considerado como um possível candidato a TPP riboswitch.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-10-03T16:32:22Z
dc.date.available.fl_str_mv 2018-10-03T16:32:22Z
dc.date.issued.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Deborah Antunes dos. Searching for TPP riboswitch in the human genome and comparison with others from different species. 2018. 117 f. Tese (Doutorado em Biologia Computacional e Sistemas)-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 2018.
dc.identifier.uri.fl_str_mv https://www.arca.fiocruz.br/handle/icict/29292
identifier_str_mv SANTOS, Deborah Antunes dos. Searching for TPP riboswitch in the human genome and comparison with others from different species. 2018. 117 f. Tese (Doutorado em Biologia Computacional e Sistemas)-Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 2018.
url https://www.arca.fiocruz.br/handle/icict/29292
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da FIOCRUZ (ARCA)
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Repositório Institucional da FIOCRUZ (ARCA)
collection Repositório Institucional da FIOCRUZ (ARCA)
bitstream.url.fl_str_mv https://www.arca.fiocruz.br/bitstream/icict/29292/1/license.txt
https://www.arca.fiocruz.br/bitstream/icict/29292/2/deborah_santos_ioc_dout_2018.pdf
https://www.arca.fiocruz.br/bitstream/icict/29292/3/deborah_santos_ioc_dout_2018.pdf.txt
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
f2c51475d6e684fdc8530c03edc745b7
1e6309c1f44cbaa1e5234a95e53c3b92
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv repositorio.arca@fiocruz.br
_version_ 1798324719584280576