Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling

Detalhes bibliográficos
Autor(a) principal: Abdalla, Livia dos Santos
Data de Publicação: 2022
Outros Autores: Augusto, Douglas A., Chame, Marcia, Dufek, Amanda S., Oliveira, Leonardo, Krempser, Eduardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da FIOCRUZ (ARCA)
Texto Completo: https://www.arca.fiocruz.br/handle/icict/55603
Resumo: Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil / Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.
id CRUZ_7529a8204692ab19f22ef151d1a1ba38
oai_identifier_str oai:www.arca.fiocruz.br:icict/55603
network_acronym_str CRUZ
network_name_str Repositório Institucional da FIOCRUZ (ARCA)
repository_id_str 2135
spelling Abdalla, Livia dos SantosAugusto, Douglas A.Chame, MarciaDufek, Amanda S.Oliveira, LeonardoKrempser, Eduardo2022-11-11T18:03:20Z2022-11-11T18:03:20Z2022ABDALLA, Livia et al. Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling. Scientific Data, v. 9, n. 489, p.1-12, 2022.https://www.arca.fiocruz.br/handle/icict/5560310.1038/s41597-022-01581-22052-4463engNature ResearchStatistically enriched geospatial datasets of Brazilian municipalities for data-driven modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil / Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil.Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil.The lack of georeferencing in geospatial datasets hinders the accomplishment of scientific studies that rely on accurate data. This is particularly concerning in the field of health sciences, where georeferenced data could lead to scientific results of great relevance to society. The Brazilian health systems, especially those for Notifiable Diseases, in practice do not register georeferenced data; instead, the records indicate merely the municipality in which the event occurred. Typically in data-driven modeling, accurate disease prediction models based on occurrence requires socioenvironmental characteristics of the exact location of each event, which is often unavailable. To enrich the expressiveness of data-driven models when the municipality of the event is the best available information, we produced datasets with statistical characterization of all 5,570 Brazilian municipalities in 642 layers of thematic data that represent the natural and artificial characteristics of the municipalities’ landscapes over time. This resulted in a collection of datasets comprising a total of 11,556 descriptive statistics attributes for each municipality.Socioenvironmental descriptive statisticsBrazilMunicipalitiesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/55603/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALs41597-022-01581-2(4).pdfs41597-022-01581-2(4).pdfData paperapplication/pdf4492027https://www.arca.fiocruz.br/bitstream/icict/55603/2/s41597-022-01581-2%284%29.pdf5c9b15c29e831f43fdf8f2a1f992aacfMD52icict/556032022-11-23 21:15:19.658oai:www.arca.fiocruz.br:icict/55603Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352022-11-24T00:15:19Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false
dc.title.en_US.fl_str_mv Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
title Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
spellingShingle Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
Abdalla, Livia dos Santos
Socioenvironmental descriptive statistics
Brazil
Municipalities
title_short Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
title_full Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
title_fullStr Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
title_full_unstemmed Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
title_sort Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
author Abdalla, Livia dos Santos
author_facet Abdalla, Livia dos Santos
Augusto, Douglas A.
Chame, Marcia
Dufek, Amanda S.
Oliveira, Leonardo
Krempser, Eduardo
author_role author
author2 Augusto, Douglas A.
Chame, Marcia
Dufek, Amanda S.
Oliveira, Leonardo
Krempser, Eduardo
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Abdalla, Livia dos Santos
Augusto, Douglas A.
Chame, Marcia
Dufek, Amanda S.
Oliveira, Leonardo
Krempser, Eduardo
dc.subject.en.en_US.fl_str_mv Socioenvironmental descriptive statistics
Brazil
Municipalities
topic Socioenvironmental descriptive statistics
Brazil
Municipalities
description Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil / Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-11-11T18:03:20Z
dc.date.available.fl_str_mv 2022-11-11T18:03:20Z
dc.date.issued.fl_str_mv 2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv ABDALLA, Livia et al. Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling. Scientific Data, v. 9, n. 489, p.1-12, 2022.
dc.identifier.uri.fl_str_mv https://www.arca.fiocruz.br/handle/icict/55603
dc.identifier.doi.none.fl_str_mv 10.1038/s41597-022-01581-2
dc.identifier.eissn.none.fl_str_mv 2052-4463
identifier_str_mv ABDALLA, Livia et al. Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling. Scientific Data, v. 9, n. 489, p.1-12, 2022.
10.1038/s41597-022-01581-2
2052-4463
url https://www.arca.fiocruz.br/handle/icict/55603
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:Repositório Institucional da FIOCRUZ (ARCA)
instname:Fundação Oswaldo Cruz (FIOCRUZ)
instacron:FIOCRUZ
instname_str Fundação Oswaldo Cruz (FIOCRUZ)
instacron_str FIOCRUZ
institution FIOCRUZ
reponame_str Repositório Institucional da FIOCRUZ (ARCA)
collection Repositório Institucional da FIOCRUZ (ARCA)
bitstream.url.fl_str_mv https://www.arca.fiocruz.br/bitstream/icict/55603/1/license.txt
https://www.arca.fiocruz.br/bitstream/icict/55603/2/s41597-022-01581-2%284%29.pdf
bitstream.checksum.fl_str_mv 5a560609d32a3863062d77ff32785d58
5c9b15c29e831f43fdf8f2a1f992aacf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)
repository.mail.fl_str_mv repositorio.arca@fiocruz.br
_version_ 1813008869359616000