Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/55603 |
Resumo: | Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil / Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil. |
id |
CRUZ_7529a8204692ab19f22ef151d1a1ba38 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/55603 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Abdalla, Livia dos SantosAugusto, Douglas A.Chame, MarciaDufek, Amanda S.Oliveira, LeonardoKrempser, Eduardo2022-11-11T18:03:20Z2022-11-11T18:03:20Z2022ABDALLA, Livia et al. Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling. Scientific Data, v. 9, n. 489, p.1-12, 2022.https://www.arca.fiocruz.br/handle/icict/5560310.1038/s41597-022-01581-22052-4463engNature ResearchStatistically enriched geospatial datasets of Brazilian municipalities for data-driven modelinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil / Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil.Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil.The lack of georeferencing in geospatial datasets hinders the accomplishment of scientific studies that rely on accurate data. This is particularly concerning in the field of health sciences, where georeferenced data could lead to scientific results of great relevance to society. The Brazilian health systems, especially those for Notifiable Diseases, in practice do not register georeferenced data; instead, the records indicate merely the municipality in which the event occurred. Typically in data-driven modeling, accurate disease prediction models based on occurrence requires socioenvironmental characteristics of the exact location of each event, which is often unavailable. To enrich the expressiveness of data-driven models when the municipality of the event is the best available information, we produced datasets with statistical characterization of all 5,570 Brazilian municipalities in 642 layers of thematic data that represent the natural and artificial characteristics of the municipalities’ landscapes over time. This resulted in a collection of datasets comprising a total of 11,556 descriptive statistics attributes for each municipality.Socioenvironmental descriptive statisticsBrazilMunicipalitiesinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/55603/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALs41597-022-01581-2(4).pdfs41597-022-01581-2(4).pdfData paperapplication/pdf4492027https://www.arca.fiocruz.br/bitstream/icict/55603/2/s41597-022-01581-2%284%29.pdf5c9b15c29e831f43fdf8f2a1f992aacfMD52icict/556032022-11-23 21:15:19.658oai:www.arca.fiocruz.br:icict/55603Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352022-11-24T00:15:19Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.en_US.fl_str_mv |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
title |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
spellingShingle |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling Abdalla, Livia dos Santos Socioenvironmental descriptive statistics Brazil Municipalities |
title_short |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
title_full |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
title_fullStr |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
title_full_unstemmed |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
title_sort |
Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling |
author |
Abdalla, Livia dos Santos |
author_facet |
Abdalla, Livia dos Santos Augusto, Douglas A. Chame, Marcia Dufek, Amanda S. Oliveira, Leonardo Krempser, Eduardo |
author_role |
author |
author2 |
Augusto, Douglas A. Chame, Marcia Dufek, Amanda S. Oliveira, Leonardo Krempser, Eduardo |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Abdalla, Livia dos Santos Augusto, Douglas A. Chame, Marcia Dufek, Amanda S. Oliveira, Leonardo Krempser, Eduardo |
dc.subject.en.en_US.fl_str_mv |
Socioenvironmental descriptive statistics Brazil Municipalities |
topic |
Socioenvironmental descriptive statistics Brazil Municipalities |
description |
Fundação Oswaldo Cruz. Presidência. Rio de Janeiro, RJ, Brasil / Instituto Militar de Engenharia. Rio de Janeiro, RJ, Brasil. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-11-11T18:03:20Z |
dc.date.available.fl_str_mv |
2022-11-11T18:03:20Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ABDALLA, Livia et al. Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling. Scientific Data, v. 9, n. 489, p.1-12, 2022. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/55603 |
dc.identifier.doi.none.fl_str_mv |
10.1038/s41597-022-01581-2 |
dc.identifier.eissn.none.fl_str_mv |
2052-4463 |
identifier_str_mv |
ABDALLA, Livia et al. Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling. Scientific Data, v. 9, n. 489, p.1-12, 2022. 10.1038/s41597-022-01581-2 2052-4463 |
url |
https://www.arca.fiocruz.br/handle/icict/55603 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/55603/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/55603/2/s41597-022-01581-2%284%29.pdf |
bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 5c9b15c29e831f43fdf8f2a1f992aacf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813008869359616000 |