De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/46077 |
Resumo: | Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaBECFar - Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil. |
id |
CRUZ_990ea0f62a5e9dadb342f3a90c4327e7 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/46077 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Santana, Marcos V. S.Silva Jr., Floriano P.2021-02-12T20:14:35Z2021-02-12T20:14:35Z2021SANTANA, Marcos V. S.; SILVA JR., Floriano P. De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning. BMC Chemistry, v. 15, n. 8, p. 1-20, 2021.2661-801Xhttps://www.arca.fiocruz.br/handle/icict/4607710.1186/s13065-021-00737-2engBMCCOVID-19SARS-CoV-2Aprendizado de transferênciaModelo generativoUlmfitCOVID-19UlmfitTransfer learningDe novo drug designGenerative modelDe novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaBECFar - Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaBECFar - Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil.The global pandemic of coronavirus disease (COVID-19) caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) created a rush to discover drug candidates. Despite the efforts, so far no vaccine or drug has been approved for treatment. Artificial intelligence offers solutions that could accelerate the discovery and optimization of new antivirals, especially in the current scenario dominated by the scarcity of compounds active against SARS-CoV-2. The main protease ( Mpro) of SARS-CoV-2 is an attractive target for drug discovery due to the absence in humans and the essential role in viral replication. In this work, we developed a deep learning platform for de novo design of putative inhibitors of SARS-CoV-2 main protease ( Mpro). Our methodology consists of 3 main steps: (1) training and validation of general chemistry-based generative model; (2) fine-tuning of the generative model for the chemical space of SARS-CoV- Mpro inhibitors and (3) training of a classifier for bioactivity prediction using transfer learning. The fine-tuned chemical model generated > 90% valid, diverse and novel (not present on the training set) structures. The generated molecules showed a good overlap with Mpro chemical space, displaying similar physicochemical properties and chemical structures. In addition, novel scaffolds were also generated, showing the potential to explore new chemical series. The classification model outperformed the baseline area under the precision-recall curve, showing it can be used for prediction. In addition, the model also outperformed the freely available model Chemprop on an external test set of fragments screened against SARS-CoV-2 Mpro, showing its potential to identify putative antivirals to tackle the COVID-19 pandemic. Finally, among the top-20 predicted hits, we identified nine hits via molecular docking displaying binding poses and interactions similar to experimentally validated inhibitors.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/46077/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALSantana_Marcos_etal_IOC_2021_COVID-19.pdfSantana_Marcos_etal_IOC_2021_COVID-19.pdfapplication/pdf5599951https://www.arca.fiocruz.br/bitstream/icict/46077/2/Santana_Marcos_etal_IOC_2021_COVID-19.pdfe746492b4e06d74f1d5dd36ef4c888eeMD52TEXTSantana_Marcos_etal_IOC_2021_COVID-19.pdf.txtSantana_Marcos_etal_IOC_2021_COVID-19.pdf.txtExtracted texttext/plain68271https://www.arca.fiocruz.br/bitstream/icict/46077/3/Santana_Marcos_etal_IOC_2021_COVID-19.pdf.txt890e7394d273a426d96b4eb33ddfa86aMD53icict/460772021-02-13 02:04:16.078oai:www.arca.fiocruz.br:icict/46077Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352021-02-13T05:04:16Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.pt_BR.fl_str_mv |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
title |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
spellingShingle |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning Santana, Marcos V. S. COVID-19 SARS-CoV-2 Aprendizado de transferência Modelo generativo Ulmfit COVID-19 Ulmfit Transfer learning De novo drug design Generative model |
title_short |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
title_full |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
title_fullStr |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
title_full_unstemmed |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
title_sort |
De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning |
author |
Santana, Marcos V. S. |
author_facet |
Santana, Marcos V. S. Silva Jr., Floriano P. |
author_role |
author |
author2 |
Silva Jr., Floriano P. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Santana, Marcos V. S. Silva Jr., Floriano P. |
dc.subject.other.pt_BR.fl_str_mv |
COVID-19 SARS-CoV-2 Aprendizado de transferência Modelo generativo Ulmfit |
topic |
COVID-19 SARS-CoV-2 Aprendizado de transferência Modelo generativo Ulmfit COVID-19 Ulmfit Transfer learning De novo drug design Generative model |
dc.subject.en.pt_BR.fl_str_mv |
COVID-19 Ulmfit Transfer learning De novo drug design Generative model |
description |
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. LaBECFar - Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-02-12T20:14:35Z |
dc.date.available.fl_str_mv |
2021-02-12T20:14:35Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTANA, Marcos V. S.; SILVA JR., Floriano P. De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning. BMC Chemistry, v. 15, n. 8, p. 1-20, 2021. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/46077 |
dc.identifier.issn.pt_BR.fl_str_mv |
2661-801X |
dc.identifier.doi.none.fl_str_mv |
10.1186/s13065-021-00737-2 |
identifier_str_mv |
SANTANA, Marcos V. S.; SILVA JR., Floriano P. De novo design and bioactivity prediction of SARS‑CoV‑2 main protease inhibitors using recurrent neural network‑based transfer learning. BMC Chemistry, v. 15, n. 8, p. 1-20, 2021. 2661-801X 10.1186/s13065-021-00737-2 |
url |
https://www.arca.fiocruz.br/handle/icict/46077 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
BMC |
publisher.none.fl_str_mv |
BMC |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/46077/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/46077/2/Santana_Marcos_etal_IOC_2021_COVID-19.pdf https://www.arca.fiocruz.br/bitstream/icict/46077/3/Santana_Marcos_etal_IOC_2021_COVID-19.pdf.txt |
bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 e746492b4e06d74f1d5dd36ef4c888ee 890e7394d273a426d96b4eb33ddfa86a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813009117455843328 |