Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/55289 |
Resumo: | Instituto Brasileiro de Geografia e Estatística. Escola Nacional de Ciências Estatísticas, Rio de Janeiro, RJ, Brasil. |
id |
CRUZ_bddf70c7336f0703000e182d1541a1c9 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/55289 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Paula, Daniela PolessaAguiar, Odaleia BarbosaMarques, Larissa PrunerBensenor, IsabelaSuemoto, Claudia KimieFonseca, Maria de Jesus Mendes daGriep, Rosane Härter2022-10-25T13:27:45Z2022-10-25T13:27:45Z2022PAULA, Daniela Polessa et al. Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study. Plos One, v. 17, n. 10, e0275619, p. 1 - 14, Oct. 2022.1932-6203https://www.arca.fiocruz.br/handle/icict/5528910.1371/journal.pone.0275619engPublic Library of ScienceEstudo Elsa-BrasilComparando algoritmosPrevisão de multimorbidadeAprendizado de máquinaElsa-Brasil studyComparing machineLearning algorithmsMultimorbidity predictionComparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil studyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleInstituto Brasileiro de Geografia e Estatística. Escola Nacional de Ciências Estatísticas, Rio de Janeiro, RJ, Brasil.Universidade do Estado do Rio de Janeiro. Instituto de Nutrição. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Rio de Janeiro, RJ, Brasil.Universidade de São Paulo. Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário. Departamento de Medicina Interna. São Paulo, SP, Brasil.Universidade de São Paulo. Faculdade de Medicina. Departamento de Clínica Médica. Divisão de Geriatriia. São Paulo, SP, Brasil.Fundação Oswaldo Cruz. Escola Nacional de Saúde Pública. Departamento de Epidemiologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Educação em Saúde e Meio Ambiente. Rio de Janeiro, RJ, Brasil.Background Multimorbidity is a worldwide concern related to greater disability, worse quality of life, and mortality. The early prediction is crucial for preventive strategies design and integrative medical practice. However, knowledge about how to predict multimorbidity is limited, possibly due to the complexity involved in predicting multiple chronic diseases. Methods In this study, we present the use of a machine learning approach to build cost-effective multimorbidity prediction models. Based on predictors easily obtainable in clinical practice (sociodemographic, clinical, family disease history and lifestyle), we build and compared the performance of seven multilabel classifiers (multivariate random forest, and classifier chain, binary relevance and binary dependence, with random forest and support vector machine as base classifiers), using a sample of 15105 participants from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We developed a web application for the building and use of prediction models. Results Classifier chain with random forest as base classifier performed better (accuracy = 0.34, subset accuracy = 0.15, and Hamming Loss = 0.16). For different feature sets, random forest based classifiers outperformed those based on support vector machine. BMI, blood pressure, sex, and age were the features most relevant to multimorbidity prediction. Conclusions - Our results support the choice of random forest based classifiers for multimorbidity prediction.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/55289/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALRosaneHGriep_MariaMFonseca_etal_IOC_2022.pdfRosaneHGriep_MariaMFonseca_etal_IOC_2022.pdfapplication/pdf930544https://www.arca.fiocruz.br/bitstream/icict/55289/2/RosaneHGriep_MariaMFonseca_etal_IOC_2022.pdf3b9c9231e11efee1e255ea96c37ce92aMD52icict/552892023-09-14 16:01:58.857oai:www.arca.fiocruz.br:icict/55289Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352023-09-14T19:01:58Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.en_US.fl_str_mv |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
title |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
spellingShingle |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study Paula, Daniela Polessa Estudo Elsa-Brasil Comparando algoritmos Previsão de multimorbidade Aprendizado de máquina Elsa-Brasil study Comparing machine Learning algorithms Multimorbidity prediction |
title_short |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
title_full |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
title_fullStr |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
title_full_unstemmed |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
title_sort |
Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study |
author |
Paula, Daniela Polessa |
author_facet |
Paula, Daniela Polessa Aguiar, Odaleia Barbosa Marques, Larissa Pruner Bensenor, Isabela Suemoto, Claudia Kimie Fonseca, Maria de Jesus Mendes da Griep, Rosane Härter |
author_role |
author |
author2 |
Aguiar, Odaleia Barbosa Marques, Larissa Pruner Bensenor, Isabela Suemoto, Claudia Kimie Fonseca, Maria de Jesus Mendes da Griep, Rosane Härter |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Paula, Daniela Polessa Aguiar, Odaleia Barbosa Marques, Larissa Pruner Bensenor, Isabela Suemoto, Claudia Kimie Fonseca, Maria de Jesus Mendes da Griep, Rosane Härter |
dc.subject.other.en_US.fl_str_mv |
Estudo Elsa-Brasil Comparando algoritmos Previsão de multimorbidade Aprendizado de máquina |
topic |
Estudo Elsa-Brasil Comparando algoritmos Previsão de multimorbidade Aprendizado de máquina Elsa-Brasil study Comparing machine Learning algorithms Multimorbidity prediction |
dc.subject.en.en_US.fl_str_mv |
Elsa-Brasil study Comparing machine Learning algorithms Multimorbidity prediction |
description |
Instituto Brasileiro de Geografia e Estatística. Escola Nacional de Ciências Estatísticas, Rio de Janeiro, RJ, Brasil. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-10-25T13:27:45Z |
dc.date.available.fl_str_mv |
2022-10-25T13:27:45Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PAULA, Daniela Polessa et al. Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study. Plos One, v. 17, n. 10, e0275619, p. 1 - 14, Oct. 2022. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/55289 |
dc.identifier.issn.en_US.fl_str_mv |
1932-6203 |
dc.identifier.doi.none.fl_str_mv |
10.1371/journal.pone.0275619 |
identifier_str_mv |
PAULA, Daniela Polessa et al. Comparing machine learning algorithms for multimorbidity prediction: An example from the Elsa-Brasil study. Plos One, v. 17, n. 10, e0275619, p. 1 - 14, Oct. 2022. 1932-6203 10.1371/journal.pone.0275619 |
url |
https://www.arca.fiocruz.br/handle/icict/55289 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/55289/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/55289/2/RosaneHGriep_MariaMFonseca_etal_IOC_2022.pdf |
bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 3b9c9231e11efee1e255ea96c37ce92a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813008957311025152 |