Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico

Detalhes bibliográficos
Autor(a) principal: Garcia, Priscila Crespo
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório do Centro Universitário Braz Cubas
Texto Completo: https://repositorio.cruzeirodosul.edu.br/handle/123456789/1143
Resumo: Aim: Several types of physical exercise with different protocols are able to promote plastic changes in the nervous system. The relationship of these plastic responses to structural and synaptic proteins in motor regions of the brain are less understood. The aim of this study was to evaluate the expression of the proteins synapsin I (SYS), synaptophysin (SYP), microtubule-associated proteins 2 (MAP2) and neurofilaments (NF) in the motor cortex, striatum and cerebellum of adult rats subjected to moderate intensity treadmill exercise (EE) and acrobatic exercise (AC). In addition, we analyzed the motor behavior and balance of rats of the different groups. Methods and results: Adult male Wistar rats, were separated into 3 groups: control-sedentary (n=15), EE (n=20) and AC (n=20). EE rats trained on a treadmill with a top speed of 0.6km/h for 40 minutes, 3 times a week for 4 weeks. In the AC group, the rats covered 5 times a circuit which was composed by several obstacles, three times a week for 4 weeks. For behavioral analyses we used the “Rotarod” system. In addition, in the AC group we analyzed the performance of the rats, by recording the time of passage through the acrobatic circuit. The expression of proteins in the motor cortex, striatum and cerebellum was analysed by immunohistochemical and immunoblotting techniques, and the data subjected to statistical analysis using one-way ANOVA with Tukey post hoc test when appropriate. The significance level used was 5%. Behavioral analysis showed a significant increase in time spent on the rotarod only in groups EE and AC, from the second week of training through the end of 4 weeks. As of the motor performance, acrobatic animals showed a statistically significant reduction of time needed to traverse the circuit, from 2 – 4 weeks of training. Our results also showed that rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum and of SYS in the cerebellum. On the other hand, the rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and molecular layer of the cerebellar cortex. Thus, the main changes in the AC group were seen in areas involved in basal nuclei-thalamic-cortical circuits, whereas in group EE the main changes were seen in the regions involved in cerebellar-thalamic-cortical circuits. Conclusion: Our data suggest that exercise on a treadmill and acrobatic exercise differentially modulate synaptic and structural proteins in different brain areas, playing an important role in exercise-dependent plasticity in motor regions of the brain.
id CUB_5a235fb9eff88a7b4b18bf5859ec508f
oai_identifier_str oai:repositorio.cruzeirodosul.edu.br:123456789/1143
network_acronym_str CUB
network_name_str Repositório do Centro Universitário Braz Cubas
repository_id_str
spelling Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físicoExercício físicoProteínas estruturaisProteínas sinápticasExercício acrobáticoExercício em esteiraCircuitos neurais motoresFISIOTERAPIA E TERAPIA OCUPACIONALAim: Several types of physical exercise with different protocols are able to promote plastic changes in the nervous system. The relationship of these plastic responses to structural and synaptic proteins in motor regions of the brain are less understood. The aim of this study was to evaluate the expression of the proteins synapsin I (SYS), synaptophysin (SYP), microtubule-associated proteins 2 (MAP2) and neurofilaments (NF) in the motor cortex, striatum and cerebellum of adult rats subjected to moderate intensity treadmill exercise (EE) and acrobatic exercise (AC). In addition, we analyzed the motor behavior and balance of rats of the different groups. Methods and results: Adult male Wistar rats, were separated into 3 groups: control-sedentary (n=15), EE (n=20) and AC (n=20). EE rats trained on a treadmill with a top speed of 0.6km/h for 40 minutes, 3 times a week for 4 weeks. In the AC group, the rats covered 5 times a circuit which was composed by several obstacles, three times a week for 4 weeks. For behavioral analyses we used the “Rotarod” system. In addition, in the AC group we analyzed the performance of the rats, by recording the time of passage through the acrobatic circuit. The expression of proteins in the motor cortex, striatum and cerebellum was analysed by immunohistochemical and immunoblotting techniques, and the data subjected to statistical analysis using one-way ANOVA with Tukey post hoc test when appropriate. The significance level used was 5%. Behavioral analysis showed a significant increase in time spent on the rotarod only in groups EE and AC, from the second week of training through the end of 4 weeks. As of the motor performance, acrobatic animals showed a statistically significant reduction of time needed to traverse the circuit, from 2 – 4 weeks of training. Our results also showed that rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum and of SYS in the cerebellum. On the other hand, the rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and molecular layer of the cerebellar cortex. Thus, the main changes in the AC group were seen in areas involved in basal nuclei-thalamic-cortical circuits, whereas in group EE the main changes were seen in the regions involved in cerebellar-thalamic-cortical circuits. Conclusion: Our data suggest that exercise on a treadmill and acrobatic exercise differentially modulate synaptic and structural proteins in different brain areas, playing an important role in exercise-dependent plasticity in motor regions of the brain.Introdução: Diversos tipos de exercícios físicos com seus diferentes protocolos são capazes de promover várias mudanças plásticas no sistema nervoso. No entanto, não há ainda muita clareza quanto às respostas plásticas dependentes de proteínas estruturais e sinápticas em regiões motoras quando comparados dois tipos diferentes de exercício físico, um envolvendo tarefas motoras complexas e outro envolvido com tarefas rítmicas e automáticas. O objetivo do estudo foi avaliar a expressão das proteínas sinapsina I (SYS), sinaptofisina (SYP), MAP2 (proteína associada ao microtúbulo – 2) e neurofilamentos (NF) em regiões do córtex motor, estriado e cerebelo de ratos adultos submetidos a exercício físico realizado em esteira de intensidade moderada (EE) e exercício acrobático (AC). Além disso, foi analisado o comportamento motor e equilíbrio de ratos dos diferentes grupos. Métodos e Resultados: Esse estudo utilizou-se de ratos adultos machos, Wistar, os quais foram separados em 3 grupos: controle-sedentário (n=15), EE (n=20) e AC (n=20). No grupo EE os ratos treinaram em uma esteira com velocidade máxima de 0,6 Km/h por 40 minutos, 3 vezes por semana por 4 semanas. No grupo AC, os ratos passaram 5 vezes pelo circuito que era composto por diversos obstáculos, 3 vezes por semana durante 4 semanas. Na análise comportamental foi utilizado o sistema “Rotarod”. Além disso, foi analisada a performance motora dos ratos do grupo AC através do registro do tempo de passagem pelo circuito acrobático. Para analisar a expressão das proteínas no córtex motor, estriado e cerebelo foram utilizadas as técnicas de imuno-histoquímica e “immunoblotting”, e os dados submetidos à análise estatística utilizando o teste ANOVA e o pós-teste de Tukey quando apropriado. Adotou-se o nível de significância de 5%. A análise comportamental dos animais revelou aumento significativo do tempo de permanência no Rotarod somente nos grupos EE e AC, a partir da segunda semana de treinamento e que permaneceu até o final das 4 semanas. Quanto a performance motora, após 4 semanas de treinamento acrobático, os animais mostraram uma redução estatisticamente significante do tempo necessário para atravessar todo o circuito. Em nossos resultados, ratos do grupo AC mostraram aumento significante de MAP2 e SYP no córtex motor, das quatro proteínas no estriado e de SYS no cerebelo. Por outro lado, ratos do grupo EE apresentaram aumento significativo de SYS e SYP no córtex motor, NF68, SYS e SYP no estriado e MAP2, NF e SYS no cerebelo, além de redução significativa de NF no córtex motor e na camada molecular do cerebelo. Assim, as principais alterações ocorridas no grupo AC foram vistas nas áreas envolvidas nos circuitos núcleos da base-tálamo-corticais, enquanto que no grupo EE as alterações foram vistas nas regiões envolvidas no circuito cerebelo-tálamo-cortical. Conclusão: Nossos dados sugerem que o exercício realizado em esteira e o exercício acrobático modulam proteínas sinápticas e estruturais nas áreas encefálicas de forma distinta, desempenhando um importante papel na plasticidade exercício-dependente em regiões motoras do encéfalo.Universidade Cidade de São PauloBrasilPós-GraduaçãoPrograma de Pós-Graduação Mestrado em FisioterapiaUNICIDPires, Raquel S..Garcia, Priscila Crespo2020-12-01T14:39:54Z2020-12-01T14:39:54Z2012-01-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfGARCIA, Priscila Crespo. Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico Orientadora: Profa. Dra. Raquel S. Pires. 2012. 100f. Dissertação (Mestrado em Fisioterapia) - Universidade Cidade de São Paulo, 2012.https://repositorio.cruzeirodosul.edu.br/handle/123456789/1143porAdkins, D.L., Boychuk, J., Remple, M.S., Kleim, J.A., 2006. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of applied physiology. 101, 1776-82. Ang, E.T., Dawe, G.S., Wong, P.T., Moochhala, S., Ng, Y.K., 2006. Alterations in spatial learning and memory after forced exercise. Brain research. 1113, 186-93. Black, J.E., Isaacs, K.R., Anderson, B.J., Alcantara, A.A., Greenough, W.T., 1990. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America. 87, 5568-72. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72, 248-54. Brooks, S.P., Dunnett, S.B., 2009. Tests to assess motor phenotype in mice: a user's guide. Nature reviews. Neuroscience. 10, 519-29. Cotman, C.W., Berchtold, N.C., 2007. Physical activity and the maintenance of cognition: learning from animal models. Alzheimer's & dementia : the journal of the Alzheimer's Association. 3, S30-7. Del Arco, A., Segovia, G., Canales, J.J., Garrido, P., de Blas, M., Garcia-Verdugo, J.M., Mora, F., 2007a. Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. Journal of neural transmission. 114, 43-8. Del Arco, A., Segovia, G., Garrido, P., de Blas, M., Mora, F., 2007b. Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behavioural brain research. 176, 267-73. Derksen, M.J., Ward, N.L., Hartle, K.D., Ivanco, T.L., 2007. MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis. Neurobiology of learning and memory. 87, 404-15. Ding, Q., Vaynman, S., Souda, P., Whitelegge, J.P., Gomez-Pinilla, F., 2006. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. The European journal of neuroscience. 24, 1265-76. Dustman, R.E., Emmerson, R.Y., Ruhling, R.O., Shearer, D.E., Steinhaus, L.A., Johnson, S.C., Bonekat, H.W., Shigeoka, J.W., 1990. Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiology of aging. 11, 193-200. Ferreira, A.F., Real, C.C., Rodrigues, A.C., Alves, A.S., Britto, L.R., 2010. Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain research. 1361, 31-42. Ferreira, A.F., Real, C.C., Rodrigues, A.C., Alves, A.S., Britto, L.R., 2011. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity. Brain research. 1425, 111-22. Holschneider, D.P., Yang, J., Guo, Y., Maarek, J.M., 2007. Reorganization of functional brain maps after exercise training: Importance of cerebellar-thalamic-cortical pathway. Brain research. 1184, 96-107. Holschneider, D.P., Maarek, J.M., 2008. Brain maps on the go: functional imaging during motor challenge in animals. Methods. 45, 255-61. Jones, T.A., Chu, C.J., Grande, L.A., Gregory, A.D., 1999. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19, 10153-63. Kleim, J.A., Lussnig, E., Schwarz, E.R., Comery, T.A., Greenough, W.T., 1996. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16, 4529-35. Kleim, J.A., Vij, K., Ballard, D.H., Greenough, W.T., 1997. Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17, 717-21. Kleim, J.A., Barbay, S., Nudo, R.J., 1998a. Functional reorganization of the rat motor cortex following motor skill learning. Journal of neurophysiology. 80, 3321-5. Kleim, J.A., Swain, R.A., Armstrong, K.A., Napper, R.M., Jones, T.A., Greenough, W.T., 1998b. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiology of learning and memory. 69, 274-89. Kleim, J.A., Barbay, S., Cooper, N.R., Hogg, T.M., Reidel, C.N., Remple, M.S., Nudo, R.J., 2002. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiology of learning and memory. 77, 63-77. Klintsova, A.Y., Cowell, R.M., Swain, R.A., Napper, R.M., Goodlett, C.R., Greenough, W.T., 1998. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats . I. Behavioral results. Brain research. 800, 48-61. Klintsova, A.Y., Dickson, E., Yoshida, R., Greenough, W.T., 2004. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain research. 1028, 92-104. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-5. Lambert, T.J., Fernandez, S.M., Frick, K.M., 2005. Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiology of learning and memory. 83, 206-16. Lewis, M.M., Slagle, C.G., Smith, A.B., Truong, Y., Bai, P., McKeown, M.J., Mailman, R.B., Belger, A., Huang, X., 2007. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience. 147, 224-35. Lupinacci, N.S., Rikli, R.E., Jones, C.J., Ross, D., 1993. Age and physical activity effects on reaction time and digit symbol substitution performance in cognitively active adults. Research quarterly for exercise and sport. 64, 144-50. Meeusen, R., Smolders, I., Sarre, S., de Meirleir, K., Keizer, H., Serneels, M., Ebinger, G., Michotte, Y., 1997. Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta physiologica Scandinavica. 159, 335-41. Miyachi, S., Hikosaka, O., Lu, X., 2002. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale. 146, 122-6. Molteni, R., Ying, Z., Gomez-Pinilla, F., 2002. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. The European journal of neuroscience. 16, 1107-16. Mora, F., Segovia, G., del Arco, A., 2007. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain research reviews. 55, 78-88. Real, C.C., Ferreira, A.F., Hernandes, M.S., Britto, L.R., Pires, R.S., 2010. Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain research. 1363, 63-71. Salgado-Delgado, R., Angeles-Castellanos, M., Buijs, M.R., Escobar, C., 2008. Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience. 154, 922-31. Sanchez, C., Diaz-Nido, J., Avila, J., 2000. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in neurobiology. 61, 133-68. van Praag, H., Christie, B.R., Sejnowski, T.J., Gage, F.H., 1999a. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America. 96, 13427-31. van Praag, H., Kempermann, G., Gage, F.H., 1999b. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience. 2, 266-70. Vaynman, S., Ying, Z., Gomez-Pinilla, F., 2004. Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of neuroscience research. 76, 356-62. Vaynman, S.S., Ying, Z., Yin, D., Gomez-Pinilla, F., 2006. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain research. 1070, 124-30. Yin, H.H., 2010. The sensorimotor striatum is necessary for serial order learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30, 14719-23.info:eu-repo/semantics/openAccessreponame:Repositório do Centro Universitário Braz Cubasinstname:Centro Universitário Braz Cubas (CUB)instacron:CUB2020-12-02T12:24:07Zoai:repositorio.cruzeirodosul.edu.br:123456789/1143Repositório InstitucionalPUBhttps://repositorio.brazcubas.edu.br/oai/requestbibli@brazcubas.edu.bropendoar:2020-12-02T12:24:07Repositório do Centro Universitário Braz Cubas - Centro Universitário Braz Cubas (CUB)false
dc.title.none.fl_str_mv Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
title Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
spellingShingle Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
Garcia, Priscila Crespo
Exercício físico
Proteínas estruturais
Proteínas sinápticas
Exercício acrobático
Exercício em esteira
Circuitos neurais motores
FISIOTERAPIA E TERAPIA OCUPACIONAL
title_short Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
title_full Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
title_fullStr Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
title_full_unstemmed Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
title_sort Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico
author Garcia, Priscila Crespo
author_facet Garcia, Priscila Crespo
author_role author
dc.contributor.none.fl_str_mv Pires, Raquel S.
.
dc.contributor.author.fl_str_mv Garcia, Priscila Crespo
dc.subject.por.fl_str_mv Exercício físico
Proteínas estruturais
Proteínas sinápticas
Exercício acrobático
Exercício em esteira
Circuitos neurais motores
FISIOTERAPIA E TERAPIA OCUPACIONAL
topic Exercício físico
Proteínas estruturais
Proteínas sinápticas
Exercício acrobático
Exercício em esteira
Circuitos neurais motores
FISIOTERAPIA E TERAPIA OCUPACIONAL
description Aim: Several types of physical exercise with different protocols are able to promote plastic changes in the nervous system. The relationship of these plastic responses to structural and synaptic proteins in motor regions of the brain are less understood. The aim of this study was to evaluate the expression of the proteins synapsin I (SYS), synaptophysin (SYP), microtubule-associated proteins 2 (MAP2) and neurofilaments (NF) in the motor cortex, striatum and cerebellum of adult rats subjected to moderate intensity treadmill exercise (EE) and acrobatic exercise (AC). In addition, we analyzed the motor behavior and balance of rats of the different groups. Methods and results: Adult male Wistar rats, were separated into 3 groups: control-sedentary (n=15), EE (n=20) and AC (n=20). EE rats trained on a treadmill with a top speed of 0.6km/h for 40 minutes, 3 times a week for 4 weeks. In the AC group, the rats covered 5 times a circuit which was composed by several obstacles, three times a week for 4 weeks. For behavioral analyses we used the “Rotarod” system. In addition, in the AC group we analyzed the performance of the rats, by recording the time of passage through the acrobatic circuit. The expression of proteins in the motor cortex, striatum and cerebellum was analysed by immunohistochemical and immunoblotting techniques, and the data subjected to statistical analysis using one-way ANOVA with Tukey post hoc test when appropriate. The significance level used was 5%. Behavioral analysis showed a significant increase in time spent on the rotarod only in groups EE and AC, from the second week of training through the end of 4 weeks. As of the motor performance, acrobatic animals showed a statistically significant reduction of time needed to traverse the circuit, from 2 – 4 weeks of training. Our results also showed that rats from the AE group showed a significant increase of MAP2 and SYP in the motor cortex, of all four proteins in the striatum and of SYS in the cerebellum. On the other hand, the rats from the TE group exhibited a significant increase of SYS and SYP in the motor cortex, of NF68, SYS and SYP in the striatum, and of MAP2, NF and SYS in the cerebellum, whereas NF was decreased in the motor cortex and molecular layer of the cerebellar cortex. Thus, the main changes in the AC group were seen in areas involved in basal nuclei-thalamic-cortical circuits, whereas in group EE the main changes were seen in the regions involved in cerebellar-thalamic-cortical circuits. Conclusion: Our data suggest that exercise on a treadmill and acrobatic exercise differentially modulate synaptic and structural proteins in different brain areas, playing an important role in exercise-dependent plasticity in motor regions of the brain.
publishDate 2012
dc.date.none.fl_str_mv 2012-01-26
2020-12-01T14:39:54Z
2020-12-01T14:39:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GARCIA, Priscila Crespo. Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico Orientadora: Profa. Dra. Raquel S. Pires. 2012. 100f. Dissertação (Mestrado em Fisioterapia) - Universidade Cidade de São Paulo, 2012.
https://repositorio.cruzeirodosul.edu.br/handle/123456789/1143
identifier_str_mv GARCIA, Priscila Crespo. Expressão de proteínas sinápticas e estruturais no sistema nervoso de ratos submetidos a diferentes modalidades de exercício físico Orientadora: Profa. Dra. Raquel S. Pires. 2012. 100f. Dissertação (Mestrado em Fisioterapia) - Universidade Cidade de São Paulo, 2012.
url https://repositorio.cruzeirodosul.edu.br/handle/123456789/1143
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv Adkins, D.L., Boychuk, J., Remple, M.S., Kleim, J.A., 2006. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. Journal of applied physiology. 101, 1776-82. Ang, E.T., Dawe, G.S., Wong, P.T., Moochhala, S., Ng, Y.K., 2006. Alterations in spatial learning and memory after forced exercise. Brain research. 1113, 186-93. Black, J.E., Isaacs, K.R., Anderson, B.J., Alcantara, A.A., Greenough, W.T., 1990. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proceedings of the National Academy of Sciences of the United States of America. 87, 5568-72. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 72, 248-54. Brooks, S.P., Dunnett, S.B., 2009. Tests to assess motor phenotype in mice: a user's guide. Nature reviews. Neuroscience. 10, 519-29. Cotman, C.W., Berchtold, N.C., 2007. Physical activity and the maintenance of cognition: learning from animal models. Alzheimer's & dementia : the journal of the Alzheimer's Association. 3, S30-7. Del Arco, A., Segovia, G., Canales, J.J., Garrido, P., de Blas, M., Garcia-Verdugo, J.M., Mora, F., 2007a. Environmental enrichment reduces the function of D1 dopamine receptors in the prefrontal cortex of the rat. Journal of neural transmission. 114, 43-8. Del Arco, A., Segovia, G., Garrido, P., de Blas, M., Mora, F., 2007b. Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behavioural brain research. 176, 267-73. Derksen, M.J., Ward, N.L., Hartle, K.D., Ivanco, T.L., 2007. MAP2 and synaptophysin protein expression following motor learning suggests dynamic regulation and distinct alterations coinciding with synaptogenesis. Neurobiology of learning and memory. 87, 404-15. Ding, Q., Vaynman, S., Souda, P., Whitelegge, J.P., Gomez-Pinilla, F., 2006. Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. The European journal of neuroscience. 24, 1265-76. Dustman, R.E., Emmerson, R.Y., Ruhling, R.O., Shearer, D.E., Steinhaus, L.A., Johnson, S.C., Bonekat, H.W., Shigeoka, J.W., 1990. Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiology of aging. 11, 193-200. Ferreira, A.F., Real, C.C., Rodrigues, A.C., Alves, A.S., Britto, L.R., 2010. Moderate exercise changes synaptic and cytoskeletal proteins in motor regions of the rat brain. Brain research. 1361, 31-42. Ferreira, A.F., Real, C.C., Rodrigues, A.C., Alves, A.S., Britto, L.R., 2011. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity. Brain research. 1425, 111-22. Holschneider, D.P., Yang, J., Guo, Y., Maarek, J.M., 2007. Reorganization of functional brain maps after exercise training: Importance of cerebellar-thalamic-cortical pathway. Brain research. 1184, 96-107. Holschneider, D.P., Maarek, J.M., 2008. Brain maps on the go: functional imaging during motor challenge in animals. Methods. 45, 255-61. Jones, T.A., Chu, C.J., Grande, L.A., Gregory, A.D., 1999. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19, 10153-63. Kleim, J.A., Lussnig, E., Schwarz, E.R., Comery, T.A., Greenough, W.T., 1996. Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16, 4529-35. Kleim, J.A., Vij, K., Ballard, D.H., Greenough, W.T., 1997. Learning-dependent synaptic modifications in the cerebellar cortex of the adult rat persist for at least four weeks. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17, 717-21. Kleim, J.A., Barbay, S., Nudo, R.J., 1998a. Functional reorganization of the rat motor cortex following motor skill learning. Journal of neurophysiology. 80, 3321-5. Kleim, J.A., Swain, R.A., Armstrong, K.A., Napper, R.M., Jones, T.A., Greenough, W.T., 1998b. Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiology of learning and memory. 69, 274-89. Kleim, J.A., Barbay, S., Cooper, N.R., Hogg, T.M., Reidel, C.N., Remple, M.S., Nudo, R.J., 2002. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiology of learning and memory. 77, 63-77. Klintsova, A.Y., Cowell, R.M., Swain, R.A., Napper, R.M., Goodlett, C.R., Greenough, W.T., 1998. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats . I. Behavioral results. Brain research. 800, 48-61. Klintsova, A.Y., Dickson, E., Yoshida, R., Greenough, W.T., 2004. Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain research. 1028, 92-104. Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680-5. Lambert, T.J., Fernandez, S.M., Frick, K.M., 2005. Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiology of learning and memory. 83, 206-16. Lewis, M.M., Slagle, C.G., Smith, A.B., Truong, Y., Bai, P., McKeown, M.J., Mailman, R.B., Belger, A., Huang, X., 2007. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience. 147, 224-35. Lupinacci, N.S., Rikli, R.E., Jones, C.J., Ross, D., 1993. Age and physical activity effects on reaction time and digit symbol substitution performance in cognitively active adults. Research quarterly for exercise and sport. 64, 144-50. Meeusen, R., Smolders, I., Sarre, S., de Meirleir, K., Keizer, H., Serneels, M., Ebinger, G., Michotte, Y., 1997. Endurance training effects on neurotransmitter release in rat striatum: an in vivo microdialysis study. Acta physiologica Scandinavica. 159, 335-41. Miyachi, S., Hikosaka, O., Lu, X., 2002. Differential activation of monkey striatal neurons in the early and late stages of procedural learning. Experimental brain research. Experimentelle Hirnforschung. Experimentation cerebrale. 146, 122-6. Molteni, R., Ying, Z., Gomez-Pinilla, F., 2002. Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. The European journal of neuroscience. 16, 1107-16. Mora, F., Segovia, G., del Arco, A., 2007. Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain research reviews. 55, 78-88. Real, C.C., Ferreira, A.F., Hernandes, M.S., Britto, L.R., Pires, R.S., 2010. Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain research. 1363, 63-71. Salgado-Delgado, R., Angeles-Castellanos, M., Buijs, M.R., Escobar, C., 2008. Internal desynchronization in a model of night-work by forced activity in rats. Neuroscience. 154, 922-31. Sanchez, C., Diaz-Nido, J., Avila, J., 2000. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in neurobiology. 61, 133-68. van Praag, H., Christie, B.R., Sejnowski, T.J., Gage, F.H., 1999a. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America. 96, 13427-31. van Praag, H., Kempermann, G., Gage, F.H., 1999b. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature neuroscience. 2, 266-70. Vaynman, S., Ying, Z., Gomez-Pinilla, F., 2004. Exercise induces BDNF and synapsin I to specific hippocampal subfields. Journal of neuroscience research. 76, 356-62. Vaynman, S.S., Ying, Z., Yin, D., Gomez-Pinilla, F., 2006. Exercise differentially regulates synaptic proteins associated to the function of BDNF. Brain research. 1070, 124-30. Yin, H.H., 2010. The sensorimotor striatum is necessary for serial order learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30, 14719-23.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Cidade de São Paulo
Brasil
Pós-Graduação
Programa de Pós-Graduação Mestrado em Fisioterapia
UNICID
publisher.none.fl_str_mv Universidade Cidade de São Paulo
Brasil
Pós-Graduação
Programa de Pós-Graduação Mestrado em Fisioterapia
UNICID
dc.source.none.fl_str_mv reponame:Repositório do Centro Universitário Braz Cubas
instname:Centro Universitário Braz Cubas (CUB)
instacron:CUB
instname_str Centro Universitário Braz Cubas (CUB)
instacron_str CUB
institution CUB
reponame_str Repositório do Centro Universitário Braz Cubas
collection Repositório do Centro Universitário Braz Cubas
repository.name.fl_str_mv Repositório do Centro Universitário Braz Cubas - Centro Universitário Braz Cubas (CUB)
repository.mail.fl_str_mv bibli@brazcubas.edu.br
_version_ 1798311333096062976