Efeitos da leptina e SAA na função de neutrófilos humanos

Detalhes bibliográficos
Autor(a) principal: Silva, Bianca Palmeira Santos da
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório do Centro Universitário Braz Cubas
Texto Completo: https://repositorio.cruzeirodosul.edu.br/handle/123456789/2666
Resumo: Although there is a consensus that the infections incidence is higher in obese, the effect of adipokines on neutrophil function is not completely known. Herein, we hypothesized that leptin and serum amyloid A (SAA) can activate/inactivate neutrophils and interfere with the innate immune response. So, we studied the combined effects of leptin and SAA on the function of human neutrophils. Neutrophils (2.5x106 cells / mL) were isolated and cultured in RPMI medium in the presence and absence of leptin (25 and 50ng/mL), SAA (5ug/mL) and LPS (1ug/mL). In vitro, we analyzed, through flow cytometry technique, the effect of leptin and SAA on parameters related to neutrophil viability; by ELISA we evaluated the release of cytokines (TNF-α, IL-8) and by the chemiluminescence technique amplified by lucigenin we observed the production of ROS. Under the conditions studied, neutrophil treatments with SAA, leptin and the combination SAA and leptin were not toxic to the cells. We observed an increase in ROS production of 60% (*p= 0.01) and 79% (**p= 0.02) by neutrophils, when treated with the combination of SAA and leptin at concentrations of 2.5ng/mL and 25ng/mL respectively. The treatment of neutrophils with leptin at concentrations of 25ng/mL, 50ng/mL and SAA increased by 38% (**p= 0.02) and 92% (***p= 0.003) and 159% (****p= 0.0002) the concentration of TNF-α and these cells, when treated, with leptin at concentrations of 25ng/mL and 50ng/mL with SAA showed an increase of 62% (°p= 0.0044), and 106% (°°°p= 0.0002), respectively. The treatment of neutrophils with leptin at concentrations 25ng / mL and 50ng/mL and SAA increased by 39% (**p= 0.01), 38% (***p= 0.01) and 62% (****p= 0.001) the concentration of IL-8, respectively, and these neutrophils when treated with leptin at a concentration of 50ng / mL with SAA showed an increase of 32% (°p= 0.0001). There was an increase in the production of TNF-α and IL-8 at different concentrations of leptin and in treatments with combined leptin and SAA. Our data indicate that adipose tissue can modulate neutrophil function through adipokine secretion and interfere with the innate immune response.
id CUB_b83ceb8c049e563c38dd64b8b8681d67
oai_identifier_str oai:repositorio.cruzeirodosul.edu.br:123456789/2666
network_acronym_str CUB
network_name_str Repositório do Centro Universitário Braz Cubas
repository_id_str
spelling Efeitos da leptina e SAA na função de neutrófilos humanosEffects of leptin and SAA on function of human neutrophilsLeucócitosObesidadeInflamação.CNPQ::CIENCIAS DA SAUDEAlthough there is a consensus that the infections incidence is higher in obese, the effect of adipokines on neutrophil function is not completely known. Herein, we hypothesized that leptin and serum amyloid A (SAA) can activate/inactivate neutrophils and interfere with the innate immune response. So, we studied the combined effects of leptin and SAA on the function of human neutrophils. Neutrophils (2.5x106 cells / mL) were isolated and cultured in RPMI medium in the presence and absence of leptin (25 and 50ng/mL), SAA (5ug/mL) and LPS (1ug/mL). In vitro, we analyzed, through flow cytometry technique, the effect of leptin and SAA on parameters related to neutrophil viability; by ELISA we evaluated the release of cytokines (TNF-α, IL-8) and by the chemiluminescence technique amplified by lucigenin we observed the production of ROS. Under the conditions studied, neutrophil treatments with SAA, leptin and the combination SAA and leptin were not toxic to the cells. We observed an increase in ROS production of 60% (*p= 0.01) and 79% (**p= 0.02) by neutrophils, when treated with the combination of SAA and leptin at concentrations of 2.5ng/mL and 25ng/mL respectively. The treatment of neutrophils with leptin at concentrations of 25ng/mL, 50ng/mL and SAA increased by 38% (**p= 0.02) and 92% (***p= 0.003) and 159% (****p= 0.0002) the concentration of TNF-α and these cells, when treated, with leptin at concentrations of 25ng/mL and 50ng/mL with SAA showed an increase of 62% (°p= 0.0044), and 106% (°°°p= 0.0002), respectively. The treatment of neutrophils with leptin at concentrations 25ng / mL and 50ng/mL and SAA increased by 39% (**p= 0.01), 38% (***p= 0.01) and 62% (****p= 0.001) the concentration of IL-8, respectively, and these neutrophils when treated with leptin at a concentration of 50ng / mL with SAA showed an increase of 32% (°p= 0.0001). There was an increase in the production of TNF-α and IL-8 at different concentrations of leptin and in treatments with combined leptin and SAA. Our data indicate that adipose tissue can modulate neutrophil function through adipokine secretion and interfere with the innate immune response.Embora seja consenso que a incidência e o agravamento de infeções são maiores em obesos, o efeito de adipocinas, mediadores secretados pelo tecido adiposo, como a amilóide sérica A (SAA) e a leptina, na função de neutrófilos, primeira linha de defesa do organismo, não é completamente conhecido. Acreditando na hipótese de que a leptina e a SAA possam ativar/inativar neutrófilos e interferir na resposta imune inata, nesse trabalho estudamos os efeitos da leptina e de leptina e SAA na função de neutrófilos humanos. Neutrófilos (2,5x106 células/mL) foram isolados do sangue periférico de doadores saudáveis, e posteriormente, cultivados em meio RPMI na presença de leptina (25 e 50ng/mL), SAA (5ug/mL) e leptina nas diferentes concentrações em conjunto com a SAA. LPS (1ug/mL) foi utilizado como controle positivo. In vitro analisamos, através da técnica de citometria de fluxo o efeito da leptina e de SAA sobre parâmetros relacionados à viabilidade de neutrófilos; por ELISA avaliamos a liberação de TNF-α e IL-8 e pela técnica de quimiluminescência amplificada por lucigenina observamos a produção de ROS. Nas condições estudadas, os tratamentos de neutrófilos com SAA, leptina e a combinação de ambas não foram tóxicos para as células. Observamos aumento na produção de ROS de 60% (*p=0.01) e 79% (**p=0.02) por neutrófilos, quando tratados com a combinação de SAA e leptina nas concentrações de 2.5ng/mL e 25ng/mL respectivamente. O tratamento de neutrófilos com leptina nas concentrações de 25ng/mL, 50ng/mL e SAA isoladamente aumentou 38% (**p=0.02), 92% (***p=0.003) e 159% (****p=0.0002) a concentração de TNF-α, respectivamente e essas células, quando tratadas com leptina nas concentrações de 25ng/mL e 50ng/mL em conjunto com a SAA apresentaram aumento de 62% (°p=0.0044), e 106% (°°°p=0.0002), respectivamente. A concentração de IL-8 foi aumentada em neutrófilos tradados com leptina nas concentrações 25ng/mL e 50ng/mL e SAA isoladamente, 39% (**p=0.01), 38% (***p= 0.01) e 62% (****p=0.001), respectivamente e essas células quando tratados com leptina na concentração 50ng/mL em conjunto com a SAA apresentaram aumento de 32% (°p=0.0001). Os resultados indicam que a combinação de leptina e SAA induz a produção de ROS, TNF-α e IL-8 por neutrófilos. Os nossos dados apontam que o tecido adiposo pode através da secreção de adipocinas modular a função de neutrófilos e interferir na resposta imune inata.Universidade Cruzeiro do SulBrasilPrograma de Pós Graduação em Ciências da SaúdeCruzeiro do SulDermargos, Elaine Hatanaka18316791838http://lattes.cnpq.br/0256403741529064Dermargos, Elaine Hatanaka18316791838http://lattes.cnpq.br/0256403741529064Gorjão , Renatahttp://lattes.cnpq.br/6211339830408691Sandri, Silvanahttp://lattes.cnpq.br/3978430910797029Silva, Bianca Palmeira Santos da2021-08-20T16:58:30Z2020-05-072021-08-20T16:58:30Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPALMEIRA B. Efeitos da leptina e da SAA na função de neutrófilos humano. 58 f. Dissertação (Mestrado em Ciências da Saúde) - Universidade Cruzeiro do Sul, São Paulo, 2020.https://repositorio.cruzeirodosul.edu.br/handle/123456789/2666porABELLA, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders.Nat Rev Rheumatol, 2017, n. 13, p. 100 109. AGUIRRE, V. et al. The c-Jun NH (2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem, 2000, n. 275, p. 9047 9054. ALFARO, C. et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up.Cancer Treat. Rev., 2017, n. 60, p. 24-31. AN, Z. et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF- . Cell Cycle, 2019, n. 18, p. 21. ARKAN, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med, 2005, n. 11, p. 191 198. BAGGIOLINI, M. et al. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters, 1992, n. 307, p. 97 101. BAWA, K. K. et al. A peripheral neutrophil-related inflammatory factor e. J. Neuroinflammation, 2020, n. 17, p. 84. BIE, Y. et al. The Crucial Role of CXCL8 and Its Receptors in Colorectal Liver Metastasis. Dis. Markers, 2019, DOI: 10.1156 /2019/8023460. BJÖRKMAN, L. et al. The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment. Mol. Cell. Biol., 2016, n. 36, p. 2583-2595. BODEN, G. et al. Effect of fasting on serum leptin in normal human subjects. J. Clin. Endocrinology Metabolism, 1996, n. 81, p, 3419 3423. BURG, N. D. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol, 2001, n. 99, p, 7-17. CABALLERO, A. E. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obesity Res, 2003, n. 11, p.1278-1289. CALDEFIE-CHEZET, F. et al. Leptin regulates the functional capabilities of polymorphonuclear neutrophils. Radic free. Res., 203, n. 37, p. 809 814. CARLTON, E. D. et al. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm. Behav., 2012, n. 62, p. 272 279. CONDE, J. et al. At the crossroad between immunity and metabolism: focus on leptin. Expert Rev. Clin. Immunol, 2010, n. 6, p. 801 808. COTTAM, D. R. et al. Dysfunctional immune-privilege in morbid obesity: implications and effect of gastric bypass surgery. Obes Surg., 2003, n. 1, p. 49-57. COTTAM, D. R. et al. The effect of obesity on neutrophil Fc receptors and adhesion molecules (CD16, CD11b, CD62L). Obes Surg. 2002, n. 2, p. 230- 235. DALAMAGA M. et al. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab, 2013, n. 18, p. 29 42. DALLEGRI, F. et al. Tissue injury in neutrophilic inflammation. Inflamm Res, 1997, n. 46, p, 382-391. DAVIS, R. J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, n. 103, p. 239 252. DE BUCK, M. et al. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Ver., 2016, n. 30, p. 55-69. DENVER R. J. et al. Evolution of leptin structure and function. Neuroendocrinology, 2011, n. 94, p. 21 38. EL-BENNA, J. et al. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev., 2016, n. 273, p. 180-193. ELGAZAR-CARMON, V. et al. Neutrophils transiently infiltrate intraabdominal fat early in the course of high-fat feeding. J Lipid Res, 2008, n. 49, p. 1894-1903. FRÜHBECK, G. Intracellular signalling pathways activated by leptin. Biochem. J, 2006, n. 393, p. 7 20. FURLANETO, C. J. et al. A novel function of serum amyloid a: a potent stimulus for the release of tumor necrosis factor-a, interleukin1b, and interleukin-8 by human blood neutrophil. Biochem. Biophy. Res. Commun., 2000, n. 2, p. 405-408. GABRILOVICH, D. I. The neutrophils: new outlook for old cells. Imperial College Press, 2005, n. 2. HATANAKA, E. et al. Serum amyloid A-induced mRNA expression and release of tumor necrosis factor-alpha (TNF-alpha) in human neutrophils. Immunol Lett., 2004, n. 91, p. 33-37. HATANAKA, E. et al. Interaction between serum amyloid A and leukocytes- A possible role in the progression of vascular complications in diabetes. Immunol Lett., 2007, n.108, p. 160-166. HATANAKA, E. et al. Serum Amyloid A Induces Reactive Oxygen Species (ROS) Production and Proliferation of Fibroblast. Clin. Exp. Immunol., 2011, n. 163, p. 362-367. HARVEY, A. E. et al. The growing challenge of obesity and cancer: an inflammatory issue. Ann NY Acad Sci., 2011, n. 1, p. 45-52. HERISHANU, Y. et al. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. Eur J Haematol, 2006, n. 76, p. 516-520. HIROSUMI, J. et al. A central role for JNK in obesity and insulin resistance. Nature, 2002, n. 420, p. 333 336. HOEGER, U. et al. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Bochemistry, 2020, DOI: 10.1007/978-3-030-41769-7. JAESCHKE, A. et al. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev., 2004, n. 18, p. 1976 1980. JAHN, J. et al. Decreased NK cell functions in obesity can be reactivated by fat mass reduction. Obes. Silver Spring, 2015, n. 23, p. 2233 2241. KAMP, V. M. et al. Physiological concentrations of leptin do not affect human neutrophils. PLoS One, 2013, n. 9, p. e73170. JIMENEZ, N. et al. Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine, 2006, n. 24, p. 5615-5626. KANY, S. et al. Cytokines in Inflammatory Disease. Int. J. Mol. Sci, 2019, n. 20, p. 6008. KIM, J. A. et al. White blood cell count and abdominal fat distribution in female obese adolescents. Metabolism, 2008, n. 57, p. 1375-1379. KHODABANDEHLOO, H. et al. 2016. Nanocarriers Usage for Drug Delivery in Cancer Therapy. Iran J Cancer Prev., 2016, n.24, p. e3966. KOBAYASHI, S. D. et al. An apoptosis-differentiation program in human polymorphonuclear leukocytes facilitates resolution of inflammation. J Leukoc Biol, 2003, n. 73, p. 315-322. KOPASOV, A. E. et al. Chemokine Expression in Neutrophils and Subcutaneous Adipose Tissue Cells Obtained during Abdominoplasty from Patients with Obesity and Normal Body Weight. Bulletin of Experimental Biology and Medicine, 2019, n. 167, p. 728-731. KUBE, P. The enigmatic neutrophil: what we do not know. Cell and Tissue Research, 2018, n. 371, p. 399-406. LAIRD, R. et al. Cryoplasty for the Treatment of Femoropopliteal Arterial Disease: Extended Follow-up Results. J Endovasc. Ther., 2006, n.13, p. 52- 59. LEE, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature, 2019, n. 567, p. 249-252. LIN, S. J. et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Sience, 2000, n. 22, p. 2126-2128. LIU, J. et al. The signaling of leptin. Neural Regulation of Metabolism, 2018, p. 123-144. MAIANSKY, N. A. et al. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Difer., 2003, n. 11, p. 143-153. MATTIOLI, B. et al. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol, 2005, n. 174, p. 6820 6828. MAYADAS, T. N. et al. The Multifaceted Functions of Neutrophils. Annu. Rev. Pathol., 2013, n. 9, p. 181-218. MAYER-SCHOLL, A. et al. How do neutrophils and pathogens interact? Curr. Opin. Microbiol., 2004, n. 7, p. 62-66. MISIAKI, B. et al. Chemokine alterations in bipolar disorder: A systematic review and meta-analysis. Brain Behav. Immunol., 2020, n.1591, p. 30096- 30097. MOORE, S. I. et al. Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun., 2003, n. 7, p. 4182-4185. MUNOZ, M. et al. Obesity and the immune system. Nutr Hosp., 2004, n. 6, p. 319-324. MÜNZBERG H. et al. Structure, production and signaling of leptin. Metabolism, 2015, n. 64, p.13 23. MYERS M. G. et al. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol, 2008, n. 70, p. 537 556. NAKATANI, Y. et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem, 2005, n. 280, p. 847 851. NAKATANI, Y. et al. Modulation of the JNK pathway in liver affects insulin resistance status. J. Biol. Chem, 2004, n. 279, p. 45803 45809. NGUYEN, T. T. T. et al. Identification and expression analysis of two proinflammatory cytokines, TNF- -8, in cobia ( Rachycentron canadum L.) in response to Streptococcus dysgalactiae infection. Fish & Shellfish Immunology, 2017, n. 67, p. 159 17.1 NOELS, H. et al. Catching up with important players in atherosclerosis: type I interferons and neutrophils. Curr Opin Lipidol., 2011, n. 2, p. 144-145. OLEFSKY, J. M. et al. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol., 2010 n. 72, p. 219-246. OTERO, M. et al. Leptin, from fat to inflammation: old questions and new insights. FEBS Lett., 2005, n. 2, p. 295-301. PALMBLAD, J. et al. Polymorphonuclear (PMN) function after small intestinal shunt operation for morbid obesity. Br J Haematol, 1980, n. 44, p, 101-108. PEDERSEN, J. Cultural Interchangeability: The Effects of Substituting Cultural References in Subtitling. PEPYS, M. B. et al. C-reactive protein: a critical update. J Clin Invest., 2003, n. 111, p. 1805-1812. REDDY P. et al. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clinica Chimica Acta, 2019, n. 496, p. 35-44. RIBEIRO, F. P. et al. mRNA expression and release of interleukin-8 induced by serum amyloid A in neutrophils and monocytes. Mediators Inflamm., 2003, n. 12, p. 173-178. ROCK, K. L. et al. Innate and adaptive immune responses to cell death. Immunol Rev., 2011, n. 243, p. 191-205. ROHL, M. et al. Conditional disruption of IkappaB kinase 2 fails to prevent obesity-induced insulin resistance. J. Clin. Invest, 2004, n. 113, p. 474 481. RONAN, H. et al. Acute phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF dependent signal transduction pathway. American College Rheumatology, 2005, n. 54, p. 105-114. ROSEN, E. D. et al. Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006, n. 14, p. 847-53. ROSENBAUM, M. et al. 20 years of leptin: role of leptin in energy homeostasis in humans. J. Endocrinol., 2014, n. 223, p. T83 T96. RUMMEL, C. et al. Leptin regulates brain leukocyte recruitment following LPS-induced systemic inflammation. Mol. Psychiatr., 2010, n. 15, p. 523 534. SAHU, A. Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Frontiers, 2004, n. 24, p. 225-253. SANCHEZ-MARGALET, V. et al. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action Clin. Exp. Immunol., 2003, n.133 p. 11-19. SEITZ, O. et al. Wound healing in mice with high-fat diet- or ob geneinduced diabetes-obesity syndromes: a comparative study. Exp Diabetes Res., 2010, n. 47, p.696-699. SHOELSON, S. E. et al. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord, 2003, n. 27 (3), p. 49 52. SKINNER, A. C. et al. Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood. Pediatrics, 2010, n. 125, p. 801-809. SOMMER C. et al. Cytokines, Chemokines, and Pain. Pharmacology of Pain, 2010, n. 1, p. 279-302. SONG K. H. et al. Serum amyloid A induction of cytokines in monocytes/ macrophages and lymphocytes. BenFreedman Atherosclerosis, 2009, n. 207, p. 374-383. SPRANGER, J. et al. Adiponectin and protection against type 2 diabetes mellitus. Lancel, 2003, n. 18, p, 226-228. SUN, Z. et al. Leptin inhibits neutrophil apoptosis in children via ERK/NF- -dependent pathways. Plos One, 2013, n. 8, p. 55249. TALUKDAR, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med., 2012, n. 18, p. 1407-1412. WABITSCH, M. et al. Biologically Inactive Leptin and Early-Onset Extreme Obesity. N. Eng. J. Med., 2015, n. 372, p. 48 54. WASIM, M. et al. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem. Genet. 2016, n. 54, p. 565-572. WILSON, P. G. et al. Serum amyloid A is an exchangeable apolipoprotein. Arterioscler. Thromb. Vasc. Biol., 2018, n. 38, p. 1890-1900. WONG, C. K. et al. Leptin-mediated cytokine release and migration of eosinophils: implications for immunopathophysiology of allergic inflammation. Eur. J. Immunol., 2007, n. 37, p. 2337 2348. YAMADA, T. et al. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes. Scand J Immunol, 2000, n. 52, p. 7-12. YE, R. D. et al. Emerging functions of serum amyloid A in inflammation. J. Leuk. Biol., 2015, n. 98, p. 923-929. ZALDIVAR, F. et al. Body fat and circulating leukocytes in children. Int J Obesity, 2006, n. 30, p. 906-911. ZARKESH-ESFAHANI, H. et al. Leptin indirectly activates human neutrophils via TNF- J. Immunol., 2004, n. 172 p. 1809-1814. ZHANG, J. M. et al. Cytokines, inflammation, and pain. Int Anesthesiol Clin, 2007, n. 45, p. 27-37. ZHANG Y. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994, n. 372, p. 425 432. ZHAO, S. et al. Partial leptin deficiency confers resistance to diet-induced obesity in mice. Mol. Metabol., 2020, n. 100995. ZICK, Y. Role of Ser/Thr kinases in the uncoupling of insulin signaling. Int. J. Obes. Relat. Metab. Disord, 2003, n. 27 (3), p. 56 60. ZYCHLINSKY, A. et al. Introduction: Forum in immunology on neutrophils. Microbes Infect., 2003, n. 5, p. 1289-1291.info:eu-repo/semantics/openAccessreponame:Repositório do Centro Universitário Braz Cubasinstname:Centro Universitário Braz Cubas (CUB)instacron:CUB2021-08-20T17:03:43Zoai:repositorio.cruzeirodosul.edu.br:123456789/2666Repositório InstitucionalPUBhttps://repositorio.brazcubas.edu.br/oai/requestbibli@brazcubas.edu.bropendoar:2021-08-20T17:03:43Repositório do Centro Universitário Braz Cubas - Centro Universitário Braz Cubas (CUB)false
dc.title.none.fl_str_mv Efeitos da leptina e SAA na função de neutrófilos humanos
Effects of leptin and SAA on function of human neutrophils
title Efeitos da leptina e SAA na função de neutrófilos humanos
spellingShingle Efeitos da leptina e SAA na função de neutrófilos humanos
Silva, Bianca Palmeira Santos da
Leucócitos
Obesidade
Inflamação.
CNPQ::CIENCIAS DA SAUDE
title_short Efeitos da leptina e SAA na função de neutrófilos humanos
title_full Efeitos da leptina e SAA na função de neutrófilos humanos
title_fullStr Efeitos da leptina e SAA na função de neutrófilos humanos
title_full_unstemmed Efeitos da leptina e SAA na função de neutrófilos humanos
title_sort Efeitos da leptina e SAA na função de neutrófilos humanos
author Silva, Bianca Palmeira Santos da
author_facet Silva, Bianca Palmeira Santos da
author_role author
dc.contributor.none.fl_str_mv Dermargos, Elaine Hatanaka
18316791838
http://lattes.cnpq.br/0256403741529064
Dermargos, Elaine Hatanaka
18316791838
http://lattes.cnpq.br/0256403741529064
Gorjão , Renata
http://lattes.cnpq.br/6211339830408691
Sandri, Silvana
http://lattes.cnpq.br/3978430910797029
dc.contributor.author.fl_str_mv Silva, Bianca Palmeira Santos da
dc.subject.por.fl_str_mv Leucócitos
Obesidade
Inflamação.
CNPQ::CIENCIAS DA SAUDE
topic Leucócitos
Obesidade
Inflamação.
CNPQ::CIENCIAS DA SAUDE
description Although there is a consensus that the infections incidence is higher in obese, the effect of adipokines on neutrophil function is not completely known. Herein, we hypothesized that leptin and serum amyloid A (SAA) can activate/inactivate neutrophils and interfere with the innate immune response. So, we studied the combined effects of leptin and SAA on the function of human neutrophils. Neutrophils (2.5x106 cells / mL) were isolated and cultured in RPMI medium in the presence and absence of leptin (25 and 50ng/mL), SAA (5ug/mL) and LPS (1ug/mL). In vitro, we analyzed, through flow cytometry technique, the effect of leptin and SAA on parameters related to neutrophil viability; by ELISA we evaluated the release of cytokines (TNF-α, IL-8) and by the chemiluminescence technique amplified by lucigenin we observed the production of ROS. Under the conditions studied, neutrophil treatments with SAA, leptin and the combination SAA and leptin were not toxic to the cells. We observed an increase in ROS production of 60% (*p= 0.01) and 79% (**p= 0.02) by neutrophils, when treated with the combination of SAA and leptin at concentrations of 2.5ng/mL and 25ng/mL respectively. The treatment of neutrophils with leptin at concentrations of 25ng/mL, 50ng/mL and SAA increased by 38% (**p= 0.02) and 92% (***p= 0.003) and 159% (****p= 0.0002) the concentration of TNF-α and these cells, when treated, with leptin at concentrations of 25ng/mL and 50ng/mL with SAA showed an increase of 62% (°p= 0.0044), and 106% (°°°p= 0.0002), respectively. The treatment of neutrophils with leptin at concentrations 25ng / mL and 50ng/mL and SAA increased by 39% (**p= 0.01), 38% (***p= 0.01) and 62% (****p= 0.001) the concentration of IL-8, respectively, and these neutrophils when treated with leptin at a concentration of 50ng / mL with SAA showed an increase of 32% (°p= 0.0001). There was an increase in the production of TNF-α and IL-8 at different concentrations of leptin and in treatments with combined leptin and SAA. Our data indicate that adipose tissue can modulate neutrophil function through adipokine secretion and interfere with the innate immune response.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-07
2020
2021-08-20T16:58:30Z
2021-08-20T16:58:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PALMEIRA B. Efeitos da leptina e da SAA na função de neutrófilos humano. 58 f. Dissertação (Mestrado em Ciências da Saúde) - Universidade Cruzeiro do Sul, São Paulo, 2020.
https://repositorio.cruzeirodosul.edu.br/handle/123456789/2666
identifier_str_mv PALMEIRA B. Efeitos da leptina e da SAA na função de neutrófilos humano. 58 f. Dissertação (Mestrado em Ciências da Saúde) - Universidade Cruzeiro do Sul, São Paulo, 2020.
url https://repositorio.cruzeirodosul.edu.br/handle/123456789/2666
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv ABELLA, V. et al. Leptin in the interplay of inflammation, metabolism and immune system disorders.Nat Rev Rheumatol, 2017, n. 13, p. 100 109. AGUIRRE, V. et al. The c-Jun NH (2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J. Biol. Chem, 2000, n. 275, p. 9047 9054. ALFARO, C. et al. Interleukin-8 in cancer pathogenesis, treatment and follow-up.Cancer Treat. Rev., 2017, n. 60, p. 24-31. AN, Z. et al. Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF- . Cell Cycle, 2019, n. 18, p. 21. ARKAN, M. C. et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med, 2005, n. 11, p. 191 198. BAGGIOLINI, M. et al. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters, 1992, n. 307, p. 97 101. BAWA, K. K. et al. A peripheral neutrophil-related inflammatory factor e. J. Neuroinflammation, 2020, n. 17, p. 84. BIE, Y. et al. The Crucial Role of CXCL8 and Its Receptors in Colorectal Liver Metastasis. Dis. Markers, 2019, DOI: 10.1156 /2019/8023460. BJÖRKMAN, L. et al. The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment. Mol. Cell. Biol., 2016, n. 36, p. 2583-2595. BODEN, G. et al. Effect of fasting on serum leptin in normal human subjects. J. Clin. Endocrinology Metabolism, 1996, n. 81, p, 3419 3423. BURG, N. D. The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol, 2001, n. 99, p, 7-17. CABALLERO, A. E. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obesity Res, 2003, n. 11, p.1278-1289. CALDEFIE-CHEZET, F. et al. Leptin regulates the functional capabilities of polymorphonuclear neutrophils. Radic free. Res., 203, n. 37, p. 809 814. CARLTON, E. D. et al. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm. Behav., 2012, n. 62, p. 272 279. CONDE, J. et al. At the crossroad between immunity and metabolism: focus on leptin. Expert Rev. Clin. Immunol, 2010, n. 6, p. 801 808. COTTAM, D. R. et al. Dysfunctional immune-privilege in morbid obesity: implications and effect of gastric bypass surgery. Obes Surg., 2003, n. 1, p. 49-57. COTTAM, D. R. et al. The effect of obesity on neutrophil Fc receptors and adhesion molecules (CD16, CD11b, CD62L). Obes Surg. 2002, n. 2, p. 230- 235. DALAMAGA M. et al. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab, 2013, n. 18, p. 29 42. DALLEGRI, F. et al. Tissue injury in neutrophilic inflammation. Inflamm Res, 1997, n. 46, p, 382-391. DAVIS, R. J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, n. 103, p. 239 252. DE BUCK, M. et al. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Ver., 2016, n. 30, p. 55-69. DENVER R. J. et al. Evolution of leptin structure and function. Neuroendocrinology, 2011, n. 94, p. 21 38. EL-BENNA, J. et al. Priming of the neutrophil respiratory burst: role in host defense and inflammation. Immunol Rev., 2016, n. 273, p. 180-193. ELGAZAR-CARMON, V. et al. Neutrophils transiently infiltrate intraabdominal fat early in the course of high-fat feeding. J Lipid Res, 2008, n. 49, p. 1894-1903. FRÜHBECK, G. Intracellular signalling pathways activated by leptin. Biochem. J, 2006, n. 393, p. 7 20. FURLANETO, C. J. et al. A novel function of serum amyloid a: a potent stimulus for the release of tumor necrosis factor-a, interleukin1b, and interleukin-8 by human blood neutrophil. Biochem. Biophy. Res. Commun., 2000, n. 2, p. 405-408. GABRILOVICH, D. I. The neutrophils: new outlook for old cells. Imperial College Press, 2005, n. 2. HATANAKA, E. et al. Serum amyloid A-induced mRNA expression and release of tumor necrosis factor-alpha (TNF-alpha) in human neutrophils. Immunol Lett., 2004, n. 91, p. 33-37. HATANAKA, E. et al. Interaction between serum amyloid A and leukocytes- A possible role in the progression of vascular complications in diabetes. Immunol Lett., 2007, n.108, p. 160-166. HATANAKA, E. et al. Serum Amyloid A Induces Reactive Oxygen Species (ROS) Production and Proliferation of Fibroblast. Clin. Exp. Immunol., 2011, n. 163, p. 362-367. HARVEY, A. E. et al. The growing challenge of obesity and cancer: an inflammatory issue. Ann NY Acad Sci., 2011, n. 1, p. 45-52. HERISHANU, Y. et al. Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. Eur J Haematol, 2006, n. 76, p. 516-520. HIROSUMI, J. et al. A central role for JNK in obesity and insulin resistance. Nature, 2002, n. 420, p. 333 336. HOEGER, U. et al. Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Bochemistry, 2020, DOI: 10.1007/978-3-030-41769-7. JAESCHKE, A. et al. An essential role of the JIP1 scaffold protein for JNK activation in adipose tissue. Genes Dev., 2004, n. 18, p. 1976 1980. JAHN, J. et al. Decreased NK cell functions in obesity can be reactivated by fat mass reduction. Obes. Silver Spring, 2015, n. 23, p. 2233 2241. KAMP, V. M. et al. Physiological concentrations of leptin do not affect human neutrophils. PLoS One, 2013, n. 9, p. e73170. JIMENEZ, N. et al. Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine, 2006, n. 24, p. 5615-5626. KANY, S. et al. Cytokines in Inflammatory Disease. Int. J. Mol. Sci, 2019, n. 20, p. 6008. KIM, J. A. et al. White blood cell count and abdominal fat distribution in female obese adolescents. Metabolism, 2008, n. 57, p. 1375-1379. KHODABANDEHLOO, H. et al. 2016. Nanocarriers Usage for Drug Delivery in Cancer Therapy. Iran J Cancer Prev., 2016, n.24, p. e3966. KOBAYASHI, S. D. et al. An apoptosis-differentiation program in human polymorphonuclear leukocytes facilitates resolution of inflammation. J Leukoc Biol, 2003, n. 73, p. 315-322. KOPASOV, A. E. et al. Chemokine Expression in Neutrophils and Subcutaneous Adipose Tissue Cells Obtained during Abdominoplasty from Patients with Obesity and Normal Body Weight. Bulletin of Experimental Biology and Medicine, 2019, n. 167, p. 728-731. KUBE, P. The enigmatic neutrophil: what we do not know. Cell and Tissue Research, 2018, n. 371, p. 399-406. LAIRD, R. et al. Cryoplasty for the Treatment of Femoropopliteal Arterial Disease: Extended Follow-up Results. J Endovasc. Ther., 2006, n.13, p. 52- 59. LEE, J. W. et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver. Nature, 2019, n. 567, p. 249-252. LIN, S. J. et al. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Sience, 2000, n. 22, p. 2126-2128. LIU, J. et al. The signaling of leptin. Neural Regulation of Metabolism, 2018, p. 123-144. MAIANSKY, N. A. et al. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Difer., 2003, n. 11, p. 143-153. MATTIOLI, B. et al. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol, 2005, n. 174, p. 6820 6828. MAYADAS, T. N. et al. The Multifaceted Functions of Neutrophils. Annu. Rev. Pathol., 2013, n. 9, p. 181-218. MAYER-SCHOLL, A. et al. How do neutrophils and pathogens interact? Curr. Opin. Microbiol., 2004, n. 7, p. 62-66. MISIAKI, B. et al. Chemokine alterations in bipolar disorder: A systematic review and meta-analysis. Brain Behav. Immunol., 2020, n.1591, p. 30096- 30097. MOORE, S. I. et al. Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect Immun., 2003, n. 7, p. 4182-4185. MUNOZ, M. et al. Obesity and the immune system. Nutr Hosp., 2004, n. 6, p. 319-324. MÜNZBERG H. et al. Structure, production and signaling of leptin. Metabolism, 2015, n. 64, p.13 23. MYERS M. G. et al. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol, 2008, n. 70, p. 537 556. NAKATANI, Y. et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem, 2005, n. 280, p. 847 851. NAKATANI, Y. et al. Modulation of the JNK pathway in liver affects insulin resistance status. J. Biol. Chem, 2004, n. 279, p. 45803 45809. NGUYEN, T. T. T. et al. Identification and expression analysis of two proinflammatory cytokines, TNF- -8, in cobia ( Rachycentron canadum L.) in response to Streptococcus dysgalactiae infection. Fish & Shellfish Immunology, 2017, n. 67, p. 159 17.1 NOELS, H. et al. Catching up with important players in atherosclerosis: type I interferons and neutrophils. Curr Opin Lipidol., 2011, n. 2, p. 144-145. OLEFSKY, J. M. et al. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol., 2010 n. 72, p. 219-246. OTERO, M. et al. Leptin, from fat to inflammation: old questions and new insights. FEBS Lett., 2005, n. 2, p. 295-301. PALMBLAD, J. et al. Polymorphonuclear (PMN) function after small intestinal shunt operation for morbid obesity. Br J Haematol, 1980, n. 44, p, 101-108. PEDERSEN, J. Cultural Interchangeability: The Effects of Substituting Cultural References in Subtitling. PEPYS, M. B. et al. C-reactive protein: a critical update. J Clin Invest., 2003, n. 111, p. 1805-1812. REDDY P. et al. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clinica Chimica Acta, 2019, n. 496, p. 35-44. RIBEIRO, F. P. et al. mRNA expression and release of interleukin-8 induced by serum amyloid A in neutrophils and monocytes. Mediators Inflamm., 2003, n. 12, p. 173-178. ROCK, K. L. et al. Innate and adaptive immune responses to cell death. Immunol Rev., 2011, n. 243, p. 191-205. ROHL, M. et al. Conditional disruption of IkappaB kinase 2 fails to prevent obesity-induced insulin resistance. J. Clin. Invest, 2004, n. 113, p. 474 481. RONAN, H. et al. Acute phase serum amyloid A stimulation of angiogenesis, leukocyte recruitment, and matrix degradation in rheumatoid arthritis through an NF dependent signal transduction pathway. American College Rheumatology, 2005, n. 54, p. 105-114. ROSEN, E. D. et al. Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 2006, n. 14, p. 847-53. ROSENBAUM, M. et al. 20 years of leptin: role of leptin in energy homeostasis in humans. J. Endocrinol., 2014, n. 223, p. T83 T96. RUMMEL, C. et al. Leptin regulates brain leukocyte recruitment following LPS-induced systemic inflammation. Mol. Psychiatr., 2010, n. 15, p. 523 534. SAHU, A. Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Frontiers, 2004, n. 24, p. 225-253. SANCHEZ-MARGALET, V. et al. Role of leptin as an immunomodulator of blood mononuclear cells: mechanisms of action Clin. Exp. Immunol., 2003, n.133 p. 11-19. SEITZ, O. et al. Wound healing in mice with high-fat diet- or ob geneinduced diabetes-obesity syndromes: a comparative study. Exp Diabetes Res., 2010, n. 47, p.696-699. SHOELSON, S. E. et al. Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int. J. Obes. Relat. Metab. Disord, 2003, n. 27 (3), p. 49 52. SKINNER, A. C. et al. Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood. Pediatrics, 2010, n. 125, p. 801-809. SOMMER C. et al. Cytokines, Chemokines, and Pain. Pharmacology of Pain, 2010, n. 1, p. 279-302. SONG K. H. et al. Serum amyloid A induction of cytokines in monocytes/ macrophages and lymphocytes. BenFreedman Atherosclerosis, 2009, n. 207, p. 374-383. SPRANGER, J. et al. Adiponectin and protection against type 2 diabetes mellitus. Lancel, 2003, n. 18, p, 226-228. SUN, Z. et al. Leptin inhibits neutrophil apoptosis in children via ERK/NF- -dependent pathways. Plos One, 2013, n. 8, p. 55249. TALUKDAR, S. et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med., 2012, n. 18, p. 1407-1412. WABITSCH, M. et al. Biologically Inactive Leptin and Early-Onset Extreme Obesity. N. Eng. J. Med., 2015, n. 372, p. 48 54. WASIM, M. et al. Role of Leptin Deficiency, Inefficiency, and Leptin Receptors in Obesity. Biochem. Genet. 2016, n. 54, p. 565-572. WILSON, P. G. et al. Serum amyloid A is an exchangeable apolipoprotein. Arterioscler. Thromb. Vasc. Biol., 2018, n. 38, p. 1890-1900. WONG, C. K. et al. Leptin-mediated cytokine release and migration of eosinophils: implications for immunopathophysiology of allergic inflammation. Eur. J. Immunol., 2007, n. 37, p. 2337 2348. YAMADA, T. et al. Serum amyloid A secretion from monocytic leukaemia cell line THP-1 and cultured human peripheral monocytes. Scand J Immunol, 2000, n. 52, p. 7-12. YE, R. D. et al. Emerging functions of serum amyloid A in inflammation. J. Leuk. Biol., 2015, n. 98, p. 923-929. ZALDIVAR, F. et al. Body fat and circulating leukocytes in children. Int J Obesity, 2006, n. 30, p. 906-911. ZARKESH-ESFAHANI, H. et al. Leptin indirectly activates human neutrophils via TNF- J. Immunol., 2004, n. 172 p. 1809-1814. ZHANG, J. M. et al. Cytokines, inflammation, and pain. Int Anesthesiol Clin, 2007, n. 45, p. 27-37. ZHANG Y. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994, n. 372, p. 425 432. ZHAO, S. et al. Partial leptin deficiency confers resistance to diet-induced obesity in mice. Mol. Metabol., 2020, n. 100995. ZICK, Y. Role of Ser/Thr kinases in the uncoupling of insulin signaling. Int. J. Obes. Relat. Metab. Disord, 2003, n. 27 (3), p. 56 60. ZYCHLINSKY, A. et al. Introduction: Forum in immunology on neutrophils. Microbes Infect., 2003, n. 5, p. 1289-1291.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Cruzeiro do Sul
Brasil
Programa de Pós Graduação em Ciências da Saúde
Cruzeiro do Sul
publisher.none.fl_str_mv Universidade Cruzeiro do Sul
Brasil
Programa de Pós Graduação em Ciências da Saúde
Cruzeiro do Sul
dc.source.none.fl_str_mv reponame:Repositório do Centro Universitário Braz Cubas
instname:Centro Universitário Braz Cubas (CUB)
instacron:CUB
instname_str Centro Universitário Braz Cubas (CUB)
instacron_str CUB
institution CUB
reponame_str Repositório do Centro Universitário Braz Cubas
collection Repositório do Centro Universitário Braz Cubas
repository.name.fl_str_mv Repositório do Centro Universitário Braz Cubas - Centro Universitário Braz Cubas (CUB)
repository.mail.fl_str_mv bibli@brazcubas.edu.br
_version_ 1798311359890325504