On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462014000400407 |
Resumo: | ABSTRACT: The correlation of a model with test results is a common task in engineering. Often genetic algorithms or adaptive particle swarm algorithms are used for this task. In this paper another approach is presented using two quasi-Newton algorithms of the class defined by Broyden. A study was conducted with thermal models showing the performance of this approach. Comparing the results to other studies reveals that the approach reduces the number of iterations by several orders of magnitude; typical calculation times for model correlation times are reduced from the order of weeks and months to the order of hours and days. |
id |
DCTA-1_0f68c203da5a2409bac01306a5534acb |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462014000400407 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test CorrelationThermal vacuum testThermal analysisCorrelationBroydenESATANThermicaABSTRACT: The correlation of a model with test results is a common task in engineering. Often genetic algorithms or adaptive particle swarm algorithms are used for this task. In this paper another approach is presented using two quasi-Newton algorithms of the class defined by Broyden. A study was conducted with thermal models showing the performance of this approach. Comparing the results to other studies reveals that the approach reduces the number of iterations by several orders of magnitude; typical calculation times for model correlation times are reduced from the order of weeks and months to the order of hours and days.Departamento de Ciência e Tecnologia Aeroespacial2014-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462014000400407Journal of Aerospace Technology and Management v.6 n.4 2014reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v6i4.373info:eu-repo/semantics/openAccessKlement,Janeng2017-05-26T00:00:00Zoai:scielo:S2175-91462014000400407Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-05-26T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
title |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
spellingShingle |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation Klement,Jan Thermal vacuum test Thermal analysis Correlation Broyden ESATAN Thermica |
title_short |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
title_full |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
title_fullStr |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
title_full_unstemmed |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
title_sort |
On Using Quasi-Newton Algorithms of the Broyden Class for Model-to-Test Correlation |
author |
Klement,Jan |
author_facet |
Klement,Jan |
author_role |
author |
dc.contributor.author.fl_str_mv |
Klement,Jan |
dc.subject.por.fl_str_mv |
Thermal vacuum test Thermal analysis Correlation Broyden ESATAN Thermica |
topic |
Thermal vacuum test Thermal analysis Correlation Broyden ESATAN Thermica |
description |
ABSTRACT: The correlation of a model with test results is a common task in engineering. Often genetic algorithms or adaptive particle swarm algorithms are used for this task. In this paper another approach is presented using two quasi-Newton algorithms of the class defined by Broyden. A study was conducted with thermal models showing the performance of this approach. Comparing the results to other studies reveals that the approach reduces the number of iterations by several orders of magnitude; typical calculation times for model correlation times are reduced from the order of weeks and months to the order of hours and days. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462014000400407 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462014000400407 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5028/jatm.v6i4.373 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.6 n.4 2014 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732531193741312 |