Methodology for DSC calibration in high heating rates

Detalhes bibliográficos
Autor(a) principal: Braga,Carlos Isidoro
Data de Publicação: 2011
Outros Autores: Rezende,Mirabel Cerqueira, Costa,Michelle Leali
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Aerospace Technology and Management (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462011000200179
Resumo: Abstract Despite the large use of differential scanning calorimetry (DSC) technique in advanced polymer materials characterization, the new methodology called DSC in high heating rates was developed. The heating rate during conventional DSC experiments varying from 10 to 20ºC.min-1, sample mass from 10 to 15mg and standard aluminum sample pan weighting, approximately, 27mg. In order to contribute to a better comprehension of DSC behavior in different heating rates, this work correlates as high heating rate influences to the thermal events in DSC experiments. Samples of metallic standard (In, Pb, Sn and Zn) with masses varying from 0.570mg to 20.9mg were analyzed in multiples sample heating rate from 4 to 324ºC. min-1. In order to make properly all those experiments, a precise and careful temperature and enthalpy calibrations were performed and deeply discussed. Thus, this work shows a DSC methodology able to generate good and reliable results on experiments under any researcher choice heating rates to characterize the advanced materials used, for example, for aerospace industry. Also it helps the DSC users to find in their available instruments, already installed, a better and more accurate DSC test results, improving in just one shot the analysis sensitivity and resolution. Polypropylene melting and enthalpy thermal events are also studied using both the conventional DSC method and high heating rate method.
id DCTA-1_2072f3e96faf47614c24192ab22623d8
oai_identifier_str oai:scielo:S2175-91462011000200179
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling Methodology for DSC calibration in high heating ratesDSCHigh heating rateCalibrationThermal analysisPolymersAbstract Despite the large use of differential scanning calorimetry (DSC) technique in advanced polymer materials characterization, the new methodology called DSC in high heating rates was developed. The heating rate during conventional DSC experiments varying from 10 to 20ºC.min-1, sample mass from 10 to 15mg and standard aluminum sample pan weighting, approximately, 27mg. In order to contribute to a better comprehension of DSC behavior in different heating rates, this work correlates as high heating rate influences to the thermal events in DSC experiments. Samples of metallic standard (In, Pb, Sn and Zn) with masses varying from 0.570mg to 20.9mg were analyzed in multiples sample heating rate from 4 to 324ºC. min-1. In order to make properly all those experiments, a precise and careful temperature and enthalpy calibrations were performed and deeply discussed. Thus, this work shows a DSC methodology able to generate good and reliable results on experiments under any researcher choice heating rates to characterize the advanced materials used, for example, for aerospace industry. Also it helps the DSC users to find in their available instruments, already installed, a better and more accurate DSC test results, improving in just one shot the analysis sensitivity and resolution. Polypropylene melting and enthalpy thermal events are also studied using both the conventional DSC method and high heating rate method.Departamento de Ciência e Tecnologia Aeroespacial2011-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462011000200179Journal of Aerospace Technology and Management v.3 n.2 2011reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.2011.03021911info:eu-repo/semantics/openAccessBraga,Carlos IsidoroRezende,Mirabel CerqueiraCosta,Michelle Lealieng2017-05-24T00:00:00Zoai:scielo:S2175-91462011000200179Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-05-24T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv Methodology for DSC calibration in high heating rates
title Methodology for DSC calibration in high heating rates
spellingShingle Methodology for DSC calibration in high heating rates
Braga,Carlos Isidoro
DSC
High heating rate
Calibration
Thermal analysis
Polymers
title_short Methodology for DSC calibration in high heating rates
title_full Methodology for DSC calibration in high heating rates
title_fullStr Methodology for DSC calibration in high heating rates
title_full_unstemmed Methodology for DSC calibration in high heating rates
title_sort Methodology for DSC calibration in high heating rates
author Braga,Carlos Isidoro
author_facet Braga,Carlos Isidoro
Rezende,Mirabel Cerqueira
Costa,Michelle Leali
author_role author
author2 Rezende,Mirabel Cerqueira
Costa,Michelle Leali
author2_role author
author
dc.contributor.author.fl_str_mv Braga,Carlos Isidoro
Rezende,Mirabel Cerqueira
Costa,Michelle Leali
dc.subject.por.fl_str_mv DSC
High heating rate
Calibration
Thermal analysis
Polymers
topic DSC
High heating rate
Calibration
Thermal analysis
Polymers
description Abstract Despite the large use of differential scanning calorimetry (DSC) technique in advanced polymer materials characterization, the new methodology called DSC in high heating rates was developed. The heating rate during conventional DSC experiments varying from 10 to 20ºC.min-1, sample mass from 10 to 15mg and standard aluminum sample pan weighting, approximately, 27mg. In order to contribute to a better comprehension of DSC behavior in different heating rates, this work correlates as high heating rate influences to the thermal events in DSC experiments. Samples of metallic standard (In, Pb, Sn and Zn) with masses varying from 0.570mg to 20.9mg were analyzed in multiples sample heating rate from 4 to 324ºC. min-1. In order to make properly all those experiments, a precise and careful temperature and enthalpy calibrations were performed and deeply discussed. Thus, this work shows a DSC methodology able to generate good and reliable results on experiments under any researcher choice heating rates to characterize the advanced materials used, for example, for aerospace industry. Also it helps the DSC users to find in their available instruments, already installed, a better and more accurate DSC test results, improving in just one shot the analysis sensitivity and resolution. Polypropylene melting and enthalpy thermal events are also studied using both the conventional DSC method and high heating rate method.
publishDate 2011
dc.date.none.fl_str_mv 2011-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462011000200179
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462011000200179
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.2011.03021911
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.3 n.2 2011
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732530464980992