The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System

Detalhes bibliográficos
Autor(a) principal: Zhelamskij,Michail
Data de Publicação: 2016
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Aerospace Technology and Management (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462016000400408
Resumo: ABSTRACT This article highlights both theoretical and experimental experiences in the field of helmet-mounted cueing systems. The current state of these systems is described as optical and hybrid. The adventures of the positioning under local magnetic field are considered, and the directions for further improvement of magnetic technology are identified. A new method is proposed for the local magnetic field creation to increase update rate, to reduce the influence of the Earth’s magnetic field, and to reduce energy consumption of helmet-mounted cueing systems in relation to known prototypes. A mathematical model of positioning field is offered. The accuracy of the field mathematical description is studied for different shapes of windings. The transients are investigated in the source of positioning field and in the interior of the cockpit. In addition, a mathematical model of magnetic measurements is proposed, and the main sources of measurement and positioning errors are investigated. The calculation algorithm of the helmet’s coordinates is considered based on the results of magnetic measurements. The results of physical models research are given, and the operation of a sample in the full range of angles is shown. The trial mapping is conducted for the field created by the source with a ferromagnetic core. Positioning of the helmet’s movement on specified paths is performed, and the results make it possible to figure out the next generation of helmetmounted cueing systems with extended angles range, higher angular and linear accuracy, increased update rate (200 Hz), and minimized influence of Earth’s magnetic field.
id DCTA-1_28a9a83c794e5886dfe432a80fb56f8c
oai_identifier_str oai:scielo:S2175-91462016000400408
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing SystemHelmetCueing systemsMagnetic fieldABSTRACT This article highlights both theoretical and experimental experiences in the field of helmet-mounted cueing systems. The current state of these systems is described as optical and hybrid. The adventures of the positioning under local magnetic field are considered, and the directions for further improvement of magnetic technology are identified. A new method is proposed for the local magnetic field creation to increase update rate, to reduce the influence of the Earth’s magnetic field, and to reduce energy consumption of helmet-mounted cueing systems in relation to known prototypes. A mathematical model of positioning field is offered. The accuracy of the field mathematical description is studied for different shapes of windings. The transients are investigated in the source of positioning field and in the interior of the cockpit. In addition, a mathematical model of magnetic measurements is proposed, and the main sources of measurement and positioning errors are investigated. The calculation algorithm of the helmet’s coordinates is considered based on the results of magnetic measurements. The results of physical models research are given, and the operation of a sample in the full range of angles is shown. The trial mapping is conducted for the field created by the source with a ferromagnetic core. Positioning of the helmet’s movement on specified paths is performed, and the results make it possible to figure out the next generation of helmetmounted cueing systems with extended angles range, higher angular and linear accuracy, increased update rate (200 Hz), and minimized influence of Earth’s magnetic field.Departamento de Ciência e Tecnologia Aeroespacial2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462016000400408Journal of Aerospace Technology and Management v.8 n.4 2016reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v8i4.660info:eu-repo/semantics/openAccessZhelamskij,Michaileng2016-11-25T00:00:00Zoai:scielo:S2175-91462016000400408Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2016-11-25T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
title The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
spellingShingle The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
Zhelamskij,Michail
Helmet
Cueing systems
Magnetic field
title_short The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
title_full The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
title_fullStr The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
title_full_unstemmed The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
title_sort The Magnetic Tracker with Improved Properties for the Helmet-Mounted Cueing System
author Zhelamskij,Michail
author_facet Zhelamskij,Michail
author_role author
dc.contributor.author.fl_str_mv Zhelamskij,Michail
dc.subject.por.fl_str_mv Helmet
Cueing systems
Magnetic field
topic Helmet
Cueing systems
Magnetic field
description ABSTRACT This article highlights both theoretical and experimental experiences in the field of helmet-mounted cueing systems. The current state of these systems is described as optical and hybrid. The adventures of the positioning under local magnetic field are considered, and the directions for further improvement of magnetic technology are identified. A new method is proposed for the local magnetic field creation to increase update rate, to reduce the influence of the Earth’s magnetic field, and to reduce energy consumption of helmet-mounted cueing systems in relation to known prototypes. A mathematical model of positioning field is offered. The accuracy of the field mathematical description is studied for different shapes of windings. The transients are investigated in the source of positioning field and in the interior of the cockpit. In addition, a mathematical model of magnetic measurements is proposed, and the main sources of measurement and positioning errors are investigated. The calculation algorithm of the helmet’s coordinates is considered based on the results of magnetic measurements. The results of physical models research are given, and the operation of a sample in the full range of angles is shown. The trial mapping is conducted for the field created by the source with a ferromagnetic core. Positioning of the helmet’s movement on specified paths is performed, and the results make it possible to figure out the next generation of helmetmounted cueing systems with extended angles range, higher angular and linear accuracy, increased update rate (200 Hz), and minimized influence of Earth’s magnetic field.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462016000400408
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462016000400408
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.v8i4.660
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.8 n.4 2016
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732531336347648