A Precise Algorithm for Computing Sun Position on a Satellite

Detalhes bibliográficos
Autor(a) principal: Zheng,Tao
Data de Publicação: 2019
Outros Autores: Zheng,Fei, Rui,Xi, Ji,Xiang
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Aerospace Technology and Management (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100332
Resumo: ABSTRACT: To meet the high precision sun tracking needs of a space deployable membrane solar concentrator and other equipment, an existing algorithm for accurately computing the sun position is improved. Firstly, compared with other theories, the VSOP (variation seculaires des orbits planetaires) 87 theory is selected and adopted to obtain the sun position in the second equatorial coordinate system. Comparing the results with data of the astronomical almanac from 2015, it is found that the deviation of the apparent right ascension does not exceed 0.17 arc seconds, while that of the apparent declination does not exceed 1.2 arc seconds. Then, to eliminate the difference in the direction of the sun position with respect to the satellite caused by the size of the satellite’s orbit, a translation transform is introduced in the proposed algorithm. Finally, the proposed algorithm is applied to the orbit of the satellite designated by SJ-4 (shijian-4). Under the condition that both of the existing and improved algorithms adopt the VSOP87 theory to compute sun position in the second equatorial coordinate system, the maximum deviation of the azimuth angle on the SJ-4 is 35.19 arc seconds and the one of pitch angle is 19.93 arc seconds, when the deviation is computed by subtracting the results given by both algorithms. In summary, the proposed algorithm is more accurate than the existing one.
id DCTA-1_2a2c0d0d72ffca7896bacc4168f72e15
oai_identifier_str oai:scielo:S2175-91462019000100332
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling A Precise Algorithm for Computing Sun Position on a SatelliteSpace solar concentratorSun trackingVSOP87Translation transformSJ-4 satelliteABSTRACT: To meet the high precision sun tracking needs of a space deployable membrane solar concentrator and other equipment, an existing algorithm for accurately computing the sun position is improved. Firstly, compared with other theories, the VSOP (variation seculaires des orbits planetaires) 87 theory is selected and adopted to obtain the sun position in the second equatorial coordinate system. Comparing the results with data of the astronomical almanac from 2015, it is found that the deviation of the apparent right ascension does not exceed 0.17 arc seconds, while that of the apparent declination does not exceed 1.2 arc seconds. Then, to eliminate the difference in the direction of the sun position with respect to the satellite caused by the size of the satellite’s orbit, a translation transform is introduced in the proposed algorithm. Finally, the proposed algorithm is applied to the orbit of the satellite designated by SJ-4 (shijian-4). Under the condition that both of the existing and improved algorithms adopt the VSOP87 theory to compute sun position in the second equatorial coordinate system, the maximum deviation of the azimuth angle on the SJ-4 is 35.19 arc seconds and the one of pitch angle is 19.93 arc seconds, when the deviation is computed by subtracting the results given by both algorithms. In summary, the proposed algorithm is more accurate than the existing one.Departamento de Ciência e Tecnologia Aeroespacial2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100332Journal of Aerospace Technology and Management v.11 2019reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v11.1048info:eu-repo/semantics/openAccessZheng,TaoZheng,FeiRui,XiJi,Xiangeng2019-08-21T00:00:00Zoai:scielo:S2175-91462019000100332Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2019-08-21T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv A Precise Algorithm for Computing Sun Position on a Satellite
title A Precise Algorithm for Computing Sun Position on a Satellite
spellingShingle A Precise Algorithm for Computing Sun Position on a Satellite
Zheng,Tao
Space solar concentrator
Sun tracking
VSOP87
Translation transform
SJ-4 satellite
title_short A Precise Algorithm for Computing Sun Position on a Satellite
title_full A Precise Algorithm for Computing Sun Position on a Satellite
title_fullStr A Precise Algorithm for Computing Sun Position on a Satellite
title_full_unstemmed A Precise Algorithm for Computing Sun Position on a Satellite
title_sort A Precise Algorithm for Computing Sun Position on a Satellite
author Zheng,Tao
author_facet Zheng,Tao
Zheng,Fei
Rui,Xi
Ji,Xiang
author_role author
author2 Zheng,Fei
Rui,Xi
Ji,Xiang
author2_role author
author
author
dc.contributor.author.fl_str_mv Zheng,Tao
Zheng,Fei
Rui,Xi
Ji,Xiang
dc.subject.por.fl_str_mv Space solar concentrator
Sun tracking
VSOP87
Translation transform
SJ-4 satellite
topic Space solar concentrator
Sun tracking
VSOP87
Translation transform
SJ-4 satellite
description ABSTRACT: To meet the high precision sun tracking needs of a space deployable membrane solar concentrator and other equipment, an existing algorithm for accurately computing the sun position is improved. Firstly, compared with other theories, the VSOP (variation seculaires des orbits planetaires) 87 theory is selected and adopted to obtain the sun position in the second equatorial coordinate system. Comparing the results with data of the astronomical almanac from 2015, it is found that the deviation of the apparent right ascension does not exceed 0.17 arc seconds, while that of the apparent declination does not exceed 1.2 arc seconds. Then, to eliminate the difference in the direction of the sun position with respect to the satellite caused by the size of the satellite’s orbit, a translation transform is introduced in the proposed algorithm. Finally, the proposed algorithm is applied to the orbit of the satellite designated by SJ-4 (shijian-4). Under the condition that both of the existing and improved algorithms adopt the VSOP87 theory to compute sun position in the second equatorial coordinate system, the maximum deviation of the azimuth angle on the SJ-4 is 35.19 arc seconds and the one of pitch angle is 19.93 arc seconds, when the deviation is computed by subtracting the results given by both algorithms. In summary, the proposed algorithm is more accurate than the existing one.
publishDate 2019
dc.date.none.fl_str_mv 2019-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100332
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100332
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.v11.1048
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.11 2019
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732532056719360