Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone

Detalhes bibliográficos
Autor(a) principal: Apeland,Jørgen
Data de Publicação: 2020
Outros Autores: Pavlou,Dimitrios, Hemmingsen,Tor
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Aerospace Technology and Management (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100331
Resumo: ABSTRACT: Increased flight time of multirotor drones is a key enabler for further adoption and industrial use of drones. A model for analyzing the performance of a fuel cell hybrid system for a multirotor drone is presented and applied for a case with an X8 multirotor drone with a maximum take-off mass of 25 kg. Endurance is the main performance parameter, and the model can be used to quantify the relative performance between different power sources. The model aims to determine if a specific hybrid fuel cell system is a viable option for a given multirotor drone and if it will provide better endurance than when powered by batteries. The model can also be used in system optimization and sensitivity analysis. In a case study, a fuel cell hybrid system with a 7.2 L cylinder with hydrogen at 300 bar is found to increase the flight time by 43 minutes (+76%) from the currently used LiPo-batteries. A plot identifies the energy system mass threshold for when the fuel cell hybrid system gives better endurance than batteries to be 7.3 kg. Based on current technology status, the cost of a fuel cell hybrid system is about 12 times that of LiPo-batteries.
id DCTA-1_3282e04f5eb08f43965b8aedd11f5b41
oai_identifier_str oai:scielo:S2175-91462020000100331
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling Suitability Analysis of Implementing a Fuel Cell on a Multirotor DronePEM fuel cellHybrid systemMultirotor droneEndurance modelABSTRACT: Increased flight time of multirotor drones is a key enabler for further adoption and industrial use of drones. A model for analyzing the performance of a fuel cell hybrid system for a multirotor drone is presented and applied for a case with an X8 multirotor drone with a maximum take-off mass of 25 kg. Endurance is the main performance parameter, and the model can be used to quantify the relative performance between different power sources. The model aims to determine if a specific hybrid fuel cell system is a viable option for a given multirotor drone and if it will provide better endurance than when powered by batteries. The model can also be used in system optimization and sensitivity analysis. In a case study, a fuel cell hybrid system with a 7.2 L cylinder with hydrogen at 300 bar is found to increase the flight time by 43 minutes (+76%) from the currently used LiPo-batteries. A plot identifies the energy system mass threshold for when the fuel cell hybrid system gives better endurance than batteries to be 7.3 kg. Based on current technology status, the cost of a fuel cell hybrid system is about 12 times that of LiPo-batteries.Departamento de Ciência e Tecnologia Aeroespacial2020-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100331Journal of Aerospace Technology and Management v.12 2020reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v12.1172info:eu-repo/semantics/openAccessApeland,JørgenPavlou,DimitriosHemmingsen,Toreng2020-08-07T00:00:00Zoai:scielo:S2175-91462020000100331Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2020-08-07T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
title Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
spellingShingle Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
Apeland,Jørgen
PEM fuel cell
Hybrid system
Multirotor drone
Endurance model
title_short Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
title_full Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
title_fullStr Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
title_full_unstemmed Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
title_sort Suitability Analysis of Implementing a Fuel Cell on a Multirotor Drone
author Apeland,Jørgen
author_facet Apeland,Jørgen
Pavlou,Dimitrios
Hemmingsen,Tor
author_role author
author2 Pavlou,Dimitrios
Hemmingsen,Tor
author2_role author
author
dc.contributor.author.fl_str_mv Apeland,Jørgen
Pavlou,Dimitrios
Hemmingsen,Tor
dc.subject.por.fl_str_mv PEM fuel cell
Hybrid system
Multirotor drone
Endurance model
topic PEM fuel cell
Hybrid system
Multirotor drone
Endurance model
description ABSTRACT: Increased flight time of multirotor drones is a key enabler for further adoption and industrial use of drones. A model for analyzing the performance of a fuel cell hybrid system for a multirotor drone is presented and applied for a case with an X8 multirotor drone with a maximum take-off mass of 25 kg. Endurance is the main performance parameter, and the model can be used to quantify the relative performance between different power sources. The model aims to determine if a specific hybrid fuel cell system is a viable option for a given multirotor drone and if it will provide better endurance than when powered by batteries. The model can also be used in system optimization and sensitivity analysis. In a case study, a fuel cell hybrid system with a 7.2 L cylinder with hydrogen at 300 bar is found to increase the flight time by 43 minutes (+76%) from the currently used LiPo-batteries. A plot identifies the energy system mass threshold for when the fuel cell hybrid system gives better endurance than batteries to be 7.3 kg. Based on current technology status, the cost of a fuel cell hybrid system is about 12 times that of LiPo-batteries.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100331
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462020000100331
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.v12.1172
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.12 2020
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732532122779648