Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462013000400431 |
Resumo: | ABSTRACT: Mullite is an excellent structural material due to its high temperature stability, high electrical insulation capabilities and creep resistance. This material has a number of technological applications, such as rocket nozzles used in the aerospace industry. In this work, mullite was obtained by sol-gel process, using silicic sol, aluminum nitrate and ethylene glycol, besides the following volume ratios of silica sol dispersion to ethylene glycol: 1/0; 1/1; 1/2; and 1/3. After drying, the samples were thermal treated at temperatures of 1,000; 1,100; 1,200 and 1,250°C. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (Bruner-Emmett-Teller - BET). SEM showed that mullite particles are fine and nearly equiaxed. The sample without ethylene glycol showed 3/2 mullite after heat treatment at 1,250°C. The sample with intermediate ethylene glycol concentration presented two crystallization processes: the first at 1,000°C forming mullite and spinel phases, and the second at 1,250°C forming only 3/2 mullite. However, the sample with the highest ethylene glycol concentration crystallized directly to mullite at 1,000°C with the highest yield. There is a strong dependence on the specific surface area with temperature. The Rietveld refinement showed that the a cell lattice of mullite and the Al/Si molar ratio in the mullite formula depend on the ethylene glycol presence and on the calcination temperature. The lattice parameters b and c are not dependent on the alumina content, but the parameter a increases with the increase in the alumina content. Samples prepared with higher ethylene glycol concentrations reached higher mullite yields at lower temperatures. |
id |
DCTA-1_76327cf6928986b820b3d13a189c6b77 |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462013000400431 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld RefinementMulliteSol-gelEthylene glycolRietveld refinementABSTRACT: Mullite is an excellent structural material due to its high temperature stability, high electrical insulation capabilities and creep resistance. This material has a number of technological applications, such as rocket nozzles used in the aerospace industry. In this work, mullite was obtained by sol-gel process, using silicic sol, aluminum nitrate and ethylene glycol, besides the following volume ratios of silica sol dispersion to ethylene glycol: 1/0; 1/1; 1/2; and 1/3. After drying, the samples were thermal treated at temperatures of 1,000; 1,100; 1,200 and 1,250°C. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (Bruner-Emmett-Teller - BET). SEM showed that mullite particles are fine and nearly equiaxed. The sample without ethylene glycol showed 3/2 mullite after heat treatment at 1,250°C. The sample with intermediate ethylene glycol concentration presented two crystallization processes: the first at 1,000°C forming mullite and spinel phases, and the second at 1,250°C forming only 3/2 mullite. However, the sample with the highest ethylene glycol concentration crystallized directly to mullite at 1,000°C with the highest yield. There is a strong dependence on the specific surface area with temperature. The Rietveld refinement showed that the a cell lattice of mullite and the Al/Si molar ratio in the mullite formula depend on the ethylene glycol presence and on the calcination temperature. The lattice parameters b and c are not dependent on the alumina content, but the parameter a increases with the increase in the alumina content. Samples prepared with higher ethylene glycol concentrations reached higher mullite yields at lower temperatures.Departamento de Ciência e Tecnologia Aeroespacial2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462013000400431Journal of Aerospace Technology and Management v.5 n.4 2013reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v5i4.273info:eu-repo/semantics/openAccessFernandes,Flaviano WilliansCampos,Tiago Moreira BastosCividanes,Luciana de SimoneMachado,João Paulo BarrosSimonetti,Evelyn Alves NunesThim,Gilmar Patrocínioeng2017-05-29T00:00:00Zoai:scielo:S2175-91462013000400431Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-05-29T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
title |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
spellingShingle |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement Fernandes,Flaviano Willians Mullite Sol-gel Ethylene glycol Rietveld refinement |
title_short |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
title_full |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
title_fullStr |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
title_full_unstemmed |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
title_sort |
Influence of Ethylene Glycol on the Mullite Crystallization Processes Analyzed by Rietveld Refinement |
author |
Fernandes,Flaviano Willians |
author_facet |
Fernandes,Flaviano Willians Campos,Tiago Moreira Bastos Cividanes,Luciana de Simone Machado,João Paulo Barros Simonetti,Evelyn Alves Nunes Thim,Gilmar Patrocínio |
author_role |
author |
author2 |
Campos,Tiago Moreira Bastos Cividanes,Luciana de Simone Machado,João Paulo Barros Simonetti,Evelyn Alves Nunes Thim,Gilmar Patrocínio |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Fernandes,Flaviano Willians Campos,Tiago Moreira Bastos Cividanes,Luciana de Simone Machado,João Paulo Barros Simonetti,Evelyn Alves Nunes Thim,Gilmar Patrocínio |
dc.subject.por.fl_str_mv |
Mullite Sol-gel Ethylene glycol Rietveld refinement |
topic |
Mullite Sol-gel Ethylene glycol Rietveld refinement |
description |
ABSTRACT: Mullite is an excellent structural material due to its high temperature stability, high electrical insulation capabilities and creep resistance. This material has a number of technological applications, such as rocket nozzles used in the aerospace industry. In this work, mullite was obtained by sol-gel process, using silicic sol, aluminum nitrate and ethylene glycol, besides the following volume ratios of silica sol dispersion to ethylene glycol: 1/0; 1/1; 1/2; and 1/3. After drying, the samples were thermal treated at temperatures of 1,000; 1,100; 1,200 and 1,250°C. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and specific surface area (Bruner-Emmett-Teller - BET). SEM showed that mullite particles are fine and nearly equiaxed. The sample without ethylene glycol showed 3/2 mullite after heat treatment at 1,250°C. The sample with intermediate ethylene glycol concentration presented two crystallization processes: the first at 1,000°C forming mullite and spinel phases, and the second at 1,250°C forming only 3/2 mullite. However, the sample with the highest ethylene glycol concentration crystallized directly to mullite at 1,000°C with the highest yield. There is a strong dependence on the specific surface area with temperature. The Rietveld refinement showed that the a cell lattice of mullite and the Al/Si molar ratio in the mullite formula depend on the ethylene glycol presence and on the calcination temperature. The lattice parameters b and c are not dependent on the alumina content, but the parameter a increases with the increase in the alumina content. Samples prepared with higher ethylene glycol concentrations reached higher mullite yields at lower temperatures. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462013000400431 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462013000400431 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5028/jatm.v5i4.273 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.5 n.4 2013 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732530842468352 |