Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462021000100327 |
Resumo: | ABSTRACT The regional navigation satellite system (RNSS) is recently used in some countries to cover or enhance their local navigation. The most important satellite navigation systems to date are in the Earth medium orbit (MEO) and Earth synchronous Earth orbit (GEO), which are characterized by big satellites, and high launch, construction, and operation costs. In contrast, low Earth orbit (LEO) small-satellite constellations have recently become attractive because of their advantages, such as a significant reduction in system cost, an increase in communication volume, and a reduction in latency. Therefore, in this study, the spatial geometry of a LEO constellation is designed for Iran to increase the required regional navigation performance. For this purpose, the optimal constellation configuration is obtained through a multi-objective genetic algorithm (MOGA) utilizing a cost function with a combination of the geometry dilution of precision (GDOP), the number of satellites, and orbital height in the form of a design procedure. Moreover, reducing the feasible region of longitude of the ascending nodes of orbit planes is applied in the design process to reduce the search space. The simulation results indicate the constellation designed performance. |
id |
DCTA-1_9975865824a53b3ecdd81680e5de93e8 |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462021000100327 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite SystemRegional navigation satellite systemSatellite constellationMulti-objective genetic algorithmGeometry dilution of precisionLow Earth orbitABSTRACT The regional navigation satellite system (RNSS) is recently used in some countries to cover or enhance their local navigation. The most important satellite navigation systems to date are in the Earth medium orbit (MEO) and Earth synchronous Earth orbit (GEO), which are characterized by big satellites, and high launch, construction, and operation costs. In contrast, low Earth orbit (LEO) small-satellite constellations have recently become attractive because of their advantages, such as a significant reduction in system cost, an increase in communication volume, and a reduction in latency. Therefore, in this study, the spatial geometry of a LEO constellation is designed for Iran to increase the required regional navigation performance. For this purpose, the optimal constellation configuration is obtained through a multi-objective genetic algorithm (MOGA) utilizing a cost function with a combination of the geometry dilution of precision (GDOP), the number of satellites, and orbital height in the form of a design procedure. Moreover, reducing the feasible region of longitude of the ascending nodes of orbit planes is applied in the design process to reduce the search space. The simulation results indicate the constellation designed performance.Departamento de Ciência e Tecnologia Aeroespacial2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462021000100327Journal of Aerospace Technology and Management v.13 2021reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.1590/jatm.v13.1215info:eu-repo/semantics/openAccessZardashti,RezaEmami,Shivaeng2021-07-12T00:00:00Zoai:scielo:S2175-91462021000100327Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2021-07-12T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
title |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
spellingShingle |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System Zardashti,Reza Regional navigation satellite system Satellite constellation Multi-objective genetic algorithm Geometry dilution of precision Low Earth orbit |
title_short |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
title_full |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
title_fullStr |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
title_full_unstemmed |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
title_sort |
Spatial Geometry Design of a Low Earth Orbit Constellation for Iranian Regional Navigation Satellite System |
author |
Zardashti,Reza |
author_facet |
Zardashti,Reza Emami,Shiva |
author_role |
author |
author2 |
Emami,Shiva |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Zardashti,Reza Emami,Shiva |
dc.subject.por.fl_str_mv |
Regional navigation satellite system Satellite constellation Multi-objective genetic algorithm Geometry dilution of precision Low Earth orbit |
topic |
Regional navigation satellite system Satellite constellation Multi-objective genetic algorithm Geometry dilution of precision Low Earth orbit |
description |
ABSTRACT The regional navigation satellite system (RNSS) is recently used in some countries to cover or enhance their local navigation. The most important satellite navigation systems to date are in the Earth medium orbit (MEO) and Earth synchronous Earth orbit (GEO), which are characterized by big satellites, and high launch, construction, and operation costs. In contrast, low Earth orbit (LEO) small-satellite constellations have recently become attractive because of their advantages, such as a significant reduction in system cost, an increase in communication volume, and a reduction in latency. Therefore, in this study, the spatial geometry of a LEO constellation is designed for Iran to increase the required regional navigation performance. For this purpose, the optimal constellation configuration is obtained through a multi-objective genetic algorithm (MOGA) utilizing a cost function with a combination of the geometry dilution of precision (GDOP), the number of satellites, and orbital height in the form of a design procedure. Moreover, reducing the feasible region of longitude of the ascending nodes of orbit planes is applied in the design process to reduce the search space. The simulation results indicate the constellation designed performance. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462021000100327 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462021000100327 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/jatm.v13.1215 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.13 2021 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732532397506560 |