Performance evaluation of GPS receiver under equatorial scintillation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462009000200193 |
Resumo: | Abstract: Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS). This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received. |
id |
DCTA-1_9bbb2cbacb9fb2f189973adccdc1aa9b |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462009000200193 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
Performance evaluation of GPS receiver under equatorial scintillationComponent tracking performanceGPS receiverIonospheric scintillationCommunication system simulationAbstract: Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS). This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received.Departamento de Ciência e Tecnologia Aeroespacial2009-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462009000200193Journal of Aerospace Technology and Management v.1 n.2 2009reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.2009.0102193200info:eu-repo/semantics/openAccessMoraes,Alison de OliveiraPerrella,Waldecir Joãoeng2017-05-29T00:00:00Zoai:scielo:S2175-91462009000200193Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-05-29T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
Performance evaluation of GPS receiver under equatorial scintillation |
title |
Performance evaluation of GPS receiver under equatorial scintillation |
spellingShingle |
Performance evaluation of GPS receiver under equatorial scintillation Moraes,Alison de Oliveira Component tracking performance GPS receiver Ionospheric scintillation Communication system simulation |
title_short |
Performance evaluation of GPS receiver under equatorial scintillation |
title_full |
Performance evaluation of GPS receiver under equatorial scintillation |
title_fullStr |
Performance evaluation of GPS receiver under equatorial scintillation |
title_full_unstemmed |
Performance evaluation of GPS receiver under equatorial scintillation |
title_sort |
Performance evaluation of GPS receiver under equatorial scintillation |
author |
Moraes,Alison de Oliveira |
author_facet |
Moraes,Alison de Oliveira Perrella,Waldecir João |
author_role |
author |
author2 |
Perrella,Waldecir João |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Moraes,Alison de Oliveira Perrella,Waldecir João |
dc.subject.por.fl_str_mv |
Component tracking performance GPS receiver Ionospheric scintillation Communication system simulation |
topic |
Component tracking performance GPS receiver Ionospheric scintillation Communication system simulation |
description |
Abstract: Equatorial scintillation is a phenomenon that occurs daily in the equatorial region after the sunset and affects radio signals that propagate through the ionosphere. Depending on the temporal and spatial situation, equatorial scintillation can represent a problem in the availability and precision of the Global Positioning System (GPS). This work is concerned with evaluating the impact of equatorial scintillation on the performance of GPS receivers. First, the morphology and statistical model of equatorial scintillation is briefly presented. A numerical model that generates synthetic scintillation data to simulate the effects of equatorial scintillation is presented. An overview of the main theoretical principles on GPS receivers is presented. The analytical models that describe the effects of scintillation at receiver level are presented and compared with numerical simulations using a radio software receiver and synthetic data. The results achieved by simulation agreed quite well with those predicted by the analytical models. The only exception is for links with extreme levels of scintillation and when weak signals are received. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462009000200193 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462009000200193 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5028/jatm.2009.0102193200 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.1 n.2 2009 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732530367463424 |