Real-Time Gas Turbine Model for Performance Simulations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300346 |
Resumo: | ABSTRACT Industry and universities around the world invest time and money to develop digital computer programs to predict gas turbine performance. This study aims to demonstrate a brand new digital model developed with the ability to simulate gas turbine real time high fidelity performance. The model herein described run faster than 30ms per point, which is compatible with a high-definition video refresh rate: 30 frames per second. This user-friendly model, built in Visual Basic in modular structure, can be easily configured to simulate almost all the existing gas turbine architectures (single, 2 or 3 shaft engines mixed or unmixed flows). In addition, its real time capability enables simulations with the pilot in the loop at earlier design phases when their feedback may lead to design changes for improvements or corrections. In this paper, besides the model description, it is presented the model run time capability as well as a comparison of the simulated performance with a commercial gas turbine tool for single, 2 and 3 shaft engine architecture. |
id |
DCTA-1_c333f68edaf5eb494c973efa3dd191cc |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462017000300346 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
Real-Time Gas Turbine Model for Performance SimulationsPropulsionGas turbinesAircraft enginesPerformanceComputer simulationABSTRACT Industry and universities around the world invest time and money to develop digital computer programs to predict gas turbine performance. This study aims to demonstrate a brand new digital model developed with the ability to simulate gas turbine real time high fidelity performance. The model herein described run faster than 30ms per point, which is compatible with a high-definition video refresh rate: 30 frames per second. This user-friendly model, built in Visual Basic in modular structure, can be easily configured to simulate almost all the existing gas turbine architectures (single, 2 or 3 shaft engines mixed or unmixed flows). In addition, its real time capability enables simulations with the pilot in the loop at earlier design phases when their feedback may lead to design changes for improvements or corrections. In this paper, besides the model description, it is presented the model run time capability as well as a comparison of the simulated performance with a commercial gas turbine tool for single, 2 and 3 shaft engine architecture.Departamento de Ciência e Tecnologia Aeroespacial2017-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300346Journal of Aerospace Technology and Management v.9 n.3 2017reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v9i3.693info:eu-repo/semantics/openAccessGazzetta Junior,HenriqueBringhenti,CleversonBarbosa,João RobertoTomita,Jesuíno Takachieng2017-08-18T00:00:00Zoai:scielo:S2175-91462017000300346Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-08-18T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
Real-Time Gas Turbine Model for Performance Simulations |
title |
Real-Time Gas Turbine Model for Performance Simulations |
spellingShingle |
Real-Time Gas Turbine Model for Performance Simulations Gazzetta Junior,Henrique Propulsion Gas turbines Aircraft engines Performance Computer simulation |
title_short |
Real-Time Gas Turbine Model for Performance Simulations |
title_full |
Real-Time Gas Turbine Model for Performance Simulations |
title_fullStr |
Real-Time Gas Turbine Model for Performance Simulations |
title_full_unstemmed |
Real-Time Gas Turbine Model for Performance Simulations |
title_sort |
Real-Time Gas Turbine Model for Performance Simulations |
author |
Gazzetta Junior,Henrique |
author_facet |
Gazzetta Junior,Henrique Bringhenti,Cleverson Barbosa,João Roberto Tomita,Jesuíno Takachi |
author_role |
author |
author2 |
Bringhenti,Cleverson Barbosa,João Roberto Tomita,Jesuíno Takachi |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gazzetta Junior,Henrique Bringhenti,Cleverson Barbosa,João Roberto Tomita,Jesuíno Takachi |
dc.subject.por.fl_str_mv |
Propulsion Gas turbines Aircraft engines Performance Computer simulation |
topic |
Propulsion Gas turbines Aircraft engines Performance Computer simulation |
description |
ABSTRACT Industry and universities around the world invest time and money to develop digital computer programs to predict gas turbine performance. This study aims to demonstrate a brand new digital model developed with the ability to simulate gas turbine real time high fidelity performance. The model herein described run faster than 30ms per point, which is compatible with a high-definition video refresh rate: 30 frames per second. This user-friendly model, built in Visual Basic in modular structure, can be easily configured to simulate almost all the existing gas turbine architectures (single, 2 or 3 shaft engines mixed or unmixed flows). In addition, its real time capability enables simulations with the pilot in the loop at earlier design phases when their feedback may lead to design changes for improvements or corrections. In this paper, besides the model description, it is presented the model run time capability as well as a comparison of the simulated performance with a commercial gas turbine tool for single, 2 and 3 shaft engine architecture. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300346 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462017000300346 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5028/jatm.v9i3.693 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.9 n.3 2017 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732531639386112 |