Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100324 |
Resumo: | ABSTRACT: Zirconium diboride is an ultra high temperature ceramic material that leads this emerging class of materials because of its distinct combination of properties, including high melting temperature (> 3000 °C) and the lowest theoretical density (6.09 g·cm-3) among the borides. This combination of properties makes ZrB2 candidate for airframe leading edges on sharp-bodied reentry vehicles. In this work, the effect of particle size of ZrB2 on the pressureless sintering of ZrB2-SiC composites was studied, using ZrB2 powder with average particle size of 2.6 and 14.2µm. Four different vol% concentration of ß-SiC (0, 10, 20 and 30 vol%) were added to as-received and planetary milled ZrB2 powder. Samples were pressureless sintered at 2050 °C/1h in argon atmosphere. The reduction of initial ZrB2 particle size led to composites with better results of densification, mechanical properties and oxidation resistance regardless ß-SiC addition, showing relative densities around 92.5 %Theoretical Density (Td) and flexural strength and microhardness around 260 MPa and 17.5 GPa, respectively. Composites processed with as-received ZrB2 powder showed increasing in densification and flexural strength with the SiC content increasing. Relative density varied from 74.7 to 90.8 %TD and flexural strength from 102 to 241 MPa, for 0 and 30 vol% of SiC, respectively. |
id |
DCTA-1_c383e1da0e3b3dbe30b44ac48a139dbe |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462019000100324 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic CompositesUltra high temperature ceramicsZrB2SiCSinteringThermal protection systemABSTRACT: Zirconium diboride is an ultra high temperature ceramic material that leads this emerging class of materials because of its distinct combination of properties, including high melting temperature (> 3000 °C) and the lowest theoretical density (6.09 g·cm-3) among the borides. This combination of properties makes ZrB2 candidate for airframe leading edges on sharp-bodied reentry vehicles. In this work, the effect of particle size of ZrB2 on the pressureless sintering of ZrB2-SiC composites was studied, using ZrB2 powder with average particle size of 2.6 and 14.2µm. Four different vol% concentration of ß-SiC (0, 10, 20 and 30 vol%) were added to as-received and planetary milled ZrB2 powder. Samples were pressureless sintered at 2050 °C/1h in argon atmosphere. The reduction of initial ZrB2 particle size led to composites with better results of densification, mechanical properties and oxidation resistance regardless ß-SiC addition, showing relative densities around 92.5 %Theoretical Density (Td) and flexural strength and microhardness around 260 MPa and 17.5 GPa, respectively. Composites processed with as-received ZrB2 powder showed increasing in densification and flexural strength with the SiC content increasing. Relative density varied from 74.7 to 90.8 %TD and flexural strength from 102 to 241 MPa, for 0 and 30 vol% of SiC, respectively.Departamento de Ciência e Tecnologia Aeroespacial2019-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100324Journal of Aerospace Technology and Management v.11 2019reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v11.1049info:eu-repo/semantics/openAccessRocha,Rosa Maria daSene,Frank FerrerJuliani,Mariah de OliveiraDavi,Caroline Oliveiraeng2019-05-31T00:00:00Zoai:scielo:S2175-91462019000100324Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2019-05-31T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
title |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
spellingShingle |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites Rocha,Rosa Maria da Ultra high temperature ceramics ZrB2 SiC Sintering Thermal protection system |
title_short |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
title_full |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
title_fullStr |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
title_full_unstemmed |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
title_sort |
Effect of ZrB2 Particle Size on Pressureless Sintering of ZrB2 - ß-Sic Composites |
author |
Rocha,Rosa Maria da |
author_facet |
Rocha,Rosa Maria da Sene,Frank Ferrer Juliani,Mariah de Oliveira Davi,Caroline Oliveira |
author_role |
author |
author2 |
Sene,Frank Ferrer Juliani,Mariah de Oliveira Davi,Caroline Oliveira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rocha,Rosa Maria da Sene,Frank Ferrer Juliani,Mariah de Oliveira Davi,Caroline Oliveira |
dc.subject.por.fl_str_mv |
Ultra high temperature ceramics ZrB2 SiC Sintering Thermal protection system |
topic |
Ultra high temperature ceramics ZrB2 SiC Sintering Thermal protection system |
description |
ABSTRACT: Zirconium diboride is an ultra high temperature ceramic material that leads this emerging class of materials because of its distinct combination of properties, including high melting temperature (> 3000 °C) and the lowest theoretical density (6.09 g·cm-3) among the borides. This combination of properties makes ZrB2 candidate for airframe leading edges on sharp-bodied reentry vehicles. In this work, the effect of particle size of ZrB2 on the pressureless sintering of ZrB2-SiC composites was studied, using ZrB2 powder with average particle size of 2.6 and 14.2µm. Four different vol% concentration of ß-SiC (0, 10, 20 and 30 vol%) were added to as-received and planetary milled ZrB2 powder. Samples were pressureless sintered at 2050 °C/1h in argon atmosphere. The reduction of initial ZrB2 particle size led to composites with better results of densification, mechanical properties and oxidation resistance regardless ß-SiC addition, showing relative densities around 92.5 %Theoretical Density (Td) and flexural strength and microhardness around 260 MPa and 17.5 GPa, respectively. Composites processed with as-received ZrB2 powder showed increasing in densification and flexural strength with the SiC content increasing. Relative density varied from 74.7 to 90.8 %TD and flexural strength from 102 to 241 MPa, for 0 and 30 vol% of SiC, respectively. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100324 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462019000100324 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5028/jatm.v11.1049 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.11 2019 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732532044136448 |