A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions

Detalhes bibliográficos
Autor(a) principal: Jung,SungKi
Data de Publicação: 2015
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Journal of Aerospace Technology and Management (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351
Resumo: ABSTRACT: A two-dimensional second-order positivity-preserving finite volume upwind scheme is developed for a semi-coupled algorithm involving the air and droplet flow fields in the Eulerian frame, which shares the grid for each phase. Special emphasis is placed on the computational modeling, which is induced from a strongly-coupled algorithm that satisfies the strict hyperbolicity and its numerical scheme based on the Harten-Lax-van Leer-Contact solver preserving the positivity to handle multiphase flow in the Eulerian frame. The proposed modeling associated with the semi-coupled algorithm including the Navier-Stokes and droplet equations takes into account different boundary conditions on the solid surface for each phase. The verification and validation studies show that the new scheme can solve the air and droplet flow fields in fairly good agreement with the exact analytical solutions and experimental data. In particular, it accurately predicted the maximum value of the droplet impingement intensity near the stagnation region and the droplet impingement area.
id DCTA-1_f0670995e95cdf523a877aa453d78ef9
oai_identifier_str oai:scielo:S2175-91462015000300351
network_acronym_str DCTA-1
network_name_str Journal of Aerospace Technology and Management (Online)
repository_id_str
spelling A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing ConditionsComputational fluid dynamicsFinite volume methodHarten-Lax-van Leer-Contact schemePositivityMultiphase flowAircraft icingSupercooled water dropletABSTRACT: A two-dimensional second-order positivity-preserving finite volume upwind scheme is developed for a semi-coupled algorithm involving the air and droplet flow fields in the Eulerian frame, which shares the grid for each phase. Special emphasis is placed on the computational modeling, which is induced from a strongly-coupled algorithm that satisfies the strict hyperbolicity and its numerical scheme based on the Harten-Lax-van Leer-Contact solver preserving the positivity to handle multiphase flow in the Eulerian frame. The proposed modeling associated with the semi-coupled algorithm including the Navier-Stokes and droplet equations takes into account different boundary conditions on the solid surface for each phase. The verification and validation studies show that the new scheme can solve the air and droplet flow fields in fairly good agreement with the exact analytical solutions and experimental data. In particular, it accurately predicted the maximum value of the droplet impingement intensity near the stagnation region and the droplet impingement area.Departamento de Ciência e Tecnologia Aeroespacial2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351Journal of Aerospace Technology and Management v.7 n.3 2015reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v7i3.499info:eu-repo/semantics/openAccessJung,SungKieng2017-05-25T00:00:00Zoai:scielo:S2175-91462015000300351Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-05-25T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false
dc.title.none.fl_str_mv A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
title A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
spellingShingle A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
Jung,SungKi
Computational fluid dynamics
Finite volume method
Harten-Lax-van Leer-Contact scheme
Positivity
Multiphase flow
Aircraft icing
Supercooled water droplet
title_short A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
title_full A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
title_fullStr A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
title_full_unstemmed A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
title_sort A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
author Jung,SungKi
author_facet Jung,SungKi
author_role author
dc.contributor.author.fl_str_mv Jung,SungKi
dc.subject.por.fl_str_mv Computational fluid dynamics
Finite volume method
Harten-Lax-van Leer-Contact scheme
Positivity
Multiphase flow
Aircraft icing
Supercooled water droplet
topic Computational fluid dynamics
Finite volume method
Harten-Lax-van Leer-Contact scheme
Positivity
Multiphase flow
Aircraft icing
Supercooled water droplet
description ABSTRACT: A two-dimensional second-order positivity-preserving finite volume upwind scheme is developed for a semi-coupled algorithm involving the air and droplet flow fields in the Eulerian frame, which shares the grid for each phase. Special emphasis is placed on the computational modeling, which is induced from a strongly-coupled algorithm that satisfies the strict hyperbolicity and its numerical scheme based on the Harten-Lax-van Leer-Contact solver preserving the positivity to handle multiphase flow in the Eulerian frame. The proposed modeling associated with the semi-coupled algorithm including the Navier-Stokes and droplet equations takes into account different boundary conditions on the solid surface for each phase. The verification and validation studies show that the new scheme can solve the air and droplet flow fields in fairly good agreement with the exact analytical solutions and experimental data. In particular, it accurately predicted the maximum value of the droplet impingement intensity near the stagnation region and the droplet impingement area.
publishDate 2015
dc.date.none.fl_str_mv 2015-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.5028/jatm.v7i3.499
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
publisher.none.fl_str_mv Departamento de Ciência e Tecnologia Aeroespacial
dc.source.none.fl_str_mv Journal of Aerospace Technology and Management v.7 n.3 2015
reponame:Journal of Aerospace Technology and Management (Online)
instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron:DCTA
instname_str Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
instacron_str DCTA
institution DCTA
reponame_str Journal of Aerospace Technology and Management (Online)
collection Journal of Aerospace Technology and Management (Online)
repository.name.fl_str_mv Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)
repository.mail.fl_str_mv ||secretary@jatm.com.br
_version_ 1754732531253510144