A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Aerospace Technology and Management (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351 |
Resumo: | ABSTRACT: A two-dimensional second-order positivity-preserving finite volume upwind scheme is developed for a semi-coupled algorithm involving the air and droplet flow fields in the Eulerian frame, which shares the grid for each phase. Special emphasis is placed on the computational modeling, which is induced from a strongly-coupled algorithm that satisfies the strict hyperbolicity and its numerical scheme based on the Harten-Lax-van Leer-Contact solver preserving the positivity to handle multiphase flow in the Eulerian frame. The proposed modeling associated with the semi-coupled algorithm including the Navier-Stokes and droplet equations takes into account different boundary conditions on the solid surface for each phase. The verification and validation studies show that the new scheme can solve the air and droplet flow fields in fairly good agreement with the exact analytical solutions and experimental data. In particular, it accurately predicted the maximum value of the droplet impingement intensity near the stagnation region and the droplet impingement area. |
id |
DCTA-1_f0670995e95cdf523a877aa453d78ef9 |
---|---|
oai_identifier_str |
oai:scielo:S2175-91462015000300351 |
network_acronym_str |
DCTA-1 |
network_name_str |
Journal of Aerospace Technology and Management (Online) |
repository_id_str |
|
spelling |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing ConditionsComputational fluid dynamicsFinite volume methodHarten-Lax-van Leer-Contact schemePositivityMultiphase flowAircraft icingSupercooled water dropletABSTRACT: A two-dimensional second-order positivity-preserving finite volume upwind scheme is developed for a semi-coupled algorithm involving the air and droplet flow fields in the Eulerian frame, which shares the grid for each phase. Special emphasis is placed on the computational modeling, which is induced from a strongly-coupled algorithm that satisfies the strict hyperbolicity and its numerical scheme based on the Harten-Lax-van Leer-Contact solver preserving the positivity to handle multiphase flow in the Eulerian frame. The proposed modeling associated with the semi-coupled algorithm including the Navier-Stokes and droplet equations takes into account different boundary conditions on the solid surface for each phase. The verification and validation studies show that the new scheme can solve the air and droplet flow fields in fairly good agreement with the exact analytical solutions and experimental data. In particular, it accurately predicted the maximum value of the droplet impingement intensity near the stagnation region and the droplet impingement area.Departamento de Ciência e Tecnologia Aeroespacial2015-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351Journal of Aerospace Technology and Management v.7 n.3 2015reponame:Journal of Aerospace Technology and Management (Online)instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA)instacron:DCTA10.5028/jatm.v7i3.499info:eu-repo/semantics/openAccessJung,SungKieng2017-05-25T00:00:00Zoai:scielo:S2175-91462015000300351Revistahttp://www.jatm.com.br/ONGhttps://old.scielo.br/oai/scielo-oai.php||secretary@jatm.com.br2175-91461984-9648opendoar:2017-05-25T00:00Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA)false |
dc.title.none.fl_str_mv |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
title |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
spellingShingle |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions Jung,SungKi Computational fluid dynamics Finite volume method Harten-Lax-van Leer-Contact scheme Positivity Multiphase flow Aircraft icing Supercooled water droplet |
title_short |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
title_full |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
title_fullStr |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
title_full_unstemmed |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
title_sort |
A Computational Modeling for Semi-Coupled Multiphase Flow in Atmospheric Icing Conditions |
author |
Jung,SungKi |
author_facet |
Jung,SungKi |
author_role |
author |
dc.contributor.author.fl_str_mv |
Jung,SungKi |
dc.subject.por.fl_str_mv |
Computational fluid dynamics Finite volume method Harten-Lax-van Leer-Contact scheme Positivity Multiphase flow Aircraft icing Supercooled water droplet |
topic |
Computational fluid dynamics Finite volume method Harten-Lax-van Leer-Contact scheme Positivity Multiphase flow Aircraft icing Supercooled water droplet |
description |
ABSTRACT: A two-dimensional second-order positivity-preserving finite volume upwind scheme is developed for a semi-coupled algorithm involving the air and droplet flow fields in the Eulerian frame, which shares the grid for each phase. Special emphasis is placed on the computational modeling, which is induced from a strongly-coupled algorithm that satisfies the strict hyperbolicity and its numerical scheme based on the Harten-Lax-van Leer-Contact solver preserving the positivity to handle multiphase flow in the Eulerian frame. The proposed modeling associated with the semi-coupled algorithm including the Navier-Stokes and droplet equations takes into account different boundary conditions on the solid surface for each phase. The verification and validation studies show that the new scheme can solve the air and droplet flow fields in fairly good agreement with the exact analytical solutions and experimental data. In particular, it accurately predicted the maximum value of the droplet impingement intensity near the stagnation region and the droplet impingement area. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2175-91462015000300351 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.5028/jatm.v7i3.499 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
publisher.none.fl_str_mv |
Departamento de Ciência e Tecnologia Aeroespacial |
dc.source.none.fl_str_mv |
Journal of Aerospace Technology and Management v.7 n.3 2015 reponame:Journal of Aerospace Technology and Management (Online) instname:Departamento de Ciência e Tecnologia Aeroespacial (DCTA) instacron:DCTA |
instname_str |
Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
instacron_str |
DCTA |
institution |
DCTA |
reponame_str |
Journal of Aerospace Technology and Management (Online) |
collection |
Journal of Aerospace Technology and Management (Online) |
repository.name.fl_str_mv |
Journal of Aerospace Technology and Management (Online) - Departamento de Ciência e Tecnologia Aeroespacial (DCTA) |
repository.mail.fl_str_mv |
||secretary@jatm.com.br |
_version_ |
1754732531253510144 |