Modelling of functions in calculating DRIS indices
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/7535 |
Resumo: | The objective of this work was to model DRIS functions and k factor on foliar diagnosis of mango crops. Ten commercial orchards, at yield stage, in the São Francisco River valley were monitored, monthly, during a two-year period, by means of collecting leaf samples to determine N, P, K, Ca, Mg, B, Fe, Mn, Zn and Cu concentrations. Data were tested for normality and bivariate relationships between nutrient concentrations were used to calculate DRIS norms. Mean, variance as well as minimum and maximum values were calculated for each relationship within the population. Nutrients were classified as follows: highly responsive macronutrients (HRMa) (N, P and K); rarely responsive macronutrients (RRMa) (Ca and Mg); highly responsive micronutrients (HRMi) (B, Fe, Mn and Zn), and rarely responsive micronutrients (RRMi) (Cu). DRIS functions were developed for each nutrient class. Results showed that the developed model expresses the nutritional balance adjusted for each nutrient, and reflects the expected biological behavior of plants as a result of variation in the availability of nutrients. |
id |
EMBRAPA-4_3f4f453d05419c5bfd6487545e768f53 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/7535 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Modelling of functions in calculating DRIS indicesModelagem de funções no cálculo dos índices DRISMangifera indica; DRIS norms; foliar diagnosisMangifera indica; normas DRIS; diagnose foliarThe objective of this work was to model DRIS functions and k factor on foliar diagnosis of mango crops. Ten commercial orchards, at yield stage, in the São Francisco River valley were monitored, monthly, during a two-year period, by means of collecting leaf samples to determine N, P, K, Ca, Mg, B, Fe, Mn, Zn and Cu concentrations. Data were tested for normality and bivariate relationships between nutrient concentrations were used to calculate DRIS norms. Mean, variance as well as minimum and maximum values were calculated for each relationship within the population. Nutrients were classified as follows: highly responsive macronutrients (HRMa) (N, P and K); rarely responsive macronutrients (RRMa) (Ca and Mg); highly responsive micronutrients (HRMi) (B, Fe, Mn and Zn), and rarely responsive micronutrients (RRMi) (Cu). DRIS functions were developed for each nutrient class. Results showed that the developed model expresses the nutritional balance adjusted for each nutrient, and reflects the expected biological behavior of plants as a result of variation in the availability of nutrients.O objetivo deste trabalho foi modelar o fator k e as funções DRIS para a diagnose foliar de mangueiras cultivadas. Dez pomares comerciais, no estágio de produção, localizados no vale do Rio São Francisco, foram monitorados, mensalmente, durante dois anos, por meio da coleta de amostras foliares para determinação dos teores de N, P, K, Ca, Mg, B, Fe, Mn, Zn e Cu. Os dados foram testados quanto à normalidade e as relações entre as concentrações dos nutrientes foram usadas para calcular as normas DRIS, obtendo-se média, variância e limites máximo e mínimo de cada relação dentro da população amostrada. Os nutrientes foram classificados como macronutrientes de resposta freqüente (MAF) (N, P e K), macronutrientes de resposta rara (MAR) (Ca e Mg); micronutrientes de resposta freqüente (MIF) (B, Fe, Mn e Zn) e, micronutrientes de resposta rara (MIR) (Cu). Funções DRIS foram desenvolvidas para cada classe de nutrientes. O modelo desenvolvido expressa o balanço nutricional das plantas cultivadas ajustado a cada nutriente e reflete o comportamento biológico das plantas como resultado da variação da disponibilidade dos nutrientes.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraWadt, Paulo Guilherme SalvadorSilva, Davi JoséMaia, Celsemy EleuterioJúnior, Juarez Barbosa ToméPinto, Paulo Augusto da CostaMachado, Pedro Luiz Oliveira de Almeida2007-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/7535Pesquisa Agropecuaria Brasileira; v.42, n.1, jan. 2007; 57-64Pesquisa Agropecuária Brasileira; v.42, n.1, jan. 2007; 57-641678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/7535/4454info:eu-repo/semantics/openAccess2014-05-21T16:39:36Zoai:ojs.seer.sct.embrapa.br:article/7535Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-05-21T16:39:36Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Modelling of functions in calculating DRIS indices Modelagem de funções no cálculo dos índices DRIS |
title |
Modelling of functions in calculating DRIS indices |
spellingShingle |
Modelling of functions in calculating DRIS indices Wadt, Paulo Guilherme Salvador Mangifera indica; DRIS norms; foliar diagnosis Mangifera indica; normas DRIS; diagnose foliar |
title_short |
Modelling of functions in calculating DRIS indices |
title_full |
Modelling of functions in calculating DRIS indices |
title_fullStr |
Modelling of functions in calculating DRIS indices |
title_full_unstemmed |
Modelling of functions in calculating DRIS indices |
title_sort |
Modelling of functions in calculating DRIS indices |
author |
Wadt, Paulo Guilherme Salvador |
author_facet |
Wadt, Paulo Guilherme Salvador Silva, Davi José Maia, Celsemy Eleuterio Júnior, Juarez Barbosa Tomé Pinto, Paulo Augusto da Costa Machado, Pedro Luiz Oliveira de Almeida |
author_role |
author |
author2 |
Silva, Davi José Maia, Celsemy Eleuterio Júnior, Juarez Barbosa Tomé Pinto, Paulo Augusto da Costa Machado, Pedro Luiz Oliveira de Almeida |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Wadt, Paulo Guilherme Salvador Silva, Davi José Maia, Celsemy Eleuterio Júnior, Juarez Barbosa Tomé Pinto, Paulo Augusto da Costa Machado, Pedro Luiz Oliveira de Almeida |
dc.subject.por.fl_str_mv |
Mangifera indica; DRIS norms; foliar diagnosis Mangifera indica; normas DRIS; diagnose foliar |
topic |
Mangifera indica; DRIS norms; foliar diagnosis Mangifera indica; normas DRIS; diagnose foliar |
description |
The objective of this work was to model DRIS functions and k factor on foliar diagnosis of mango crops. Ten commercial orchards, at yield stage, in the São Francisco River valley were monitored, monthly, during a two-year period, by means of collecting leaf samples to determine N, P, K, Ca, Mg, B, Fe, Mn, Zn and Cu concentrations. Data were tested for normality and bivariate relationships between nutrient concentrations were used to calculate DRIS norms. Mean, variance as well as minimum and maximum values were calculated for each relationship within the population. Nutrients were classified as follows: highly responsive macronutrients (HRMa) (N, P and K); rarely responsive macronutrients (RRMa) (Ca and Mg); highly responsive micronutrients (HRMi) (B, Fe, Mn and Zn), and rarely responsive micronutrients (RRMi) (Cu). DRIS functions were developed for each nutrient class. Results showed that the developed model expresses the nutritional balance adjusted for each nutrient, and reflects the expected biological behavior of plants as a result of variation in the availability of nutrients. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-01-01 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/7535 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/7535 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/7535/4454 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.42, n.1, jan. 2007; 57-64 Pesquisa Agropecuária Brasileira; v.42, n.1, jan. 2007; 57-64 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416694476046336 |