Methods of longitudinal data analysis for the genetic improvement of sugar apple

Detalhes bibliográficos
Autor(a) principal: Mariguele, Keny Henrique
Data de Publicação: 2012
Outros Autores: de Resende, Marcos Deon Vilela, Viana, José Marcelo Soriano, Silva, Fabyano Fonseca e, de Silva, Paulo Sérgio Lima, Knop, Filipe de Castro
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/11046
Resumo: The objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit.
id EMBRAPA-4_55079e6a001b6e46e0ddba418dd5f5e8
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/11046
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Methods of longitudinal data analysis for the genetic improvement of sugar appleMétodos de análise de dados longitudinais para o melhoramento genético da pinhaAnnona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic valueAnnona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticosThe objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit.O objetivo deste trabalho foi comparar formas de análise de medidas repetidas para o melhoramento da produção de frutos de pinha (Annona squamosa). Vinte progênies de meias-irmãs foram avaliadas por três anos (2003, 2004 e 2005) em delineamento de blocos ao acaso, com cinco repetições, com cada parcela constituída de quatro plantas. A característica avaliada foi o número de frutos por indivíduo. Os modelos de simetria composta, de simetria composta com variâncias heterogêneas, autorregressivo com variâncias heterogêneas, e antedependência estruturada, foram analisados com o programa ASReml. A estimação dos componentes de variância e a predição dos valores genéticos foram feitas com o procedimento REML/BLUP. A comparação dos modelos foi realizada pelo teste de razão de verossimilhança e pelo critério de Akaike. O modelo antedependência estruturada, para os fatores progênie e parcela, e o modelo multivariado, para o fator resíduo, são as melhores abordagens para a análise dos dados, pois propiciam eficiência e parcimônia em relação ao modelo multivariado completo. Com o modelo antedependência estruturada, é possível a identificação de famílias superiores, em cada colheita, e também de famílias com maior número total de frutos.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraCNPq e CapesMariguele, Keny Henriquede Resende, Marcos Deon VilelaViana, José Marcelo SorianoSilva, Fabyano Fonseca ede Silva, Paulo Sérgio LimaKnop, Filipe de Castro2012-02-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/11046Pesquisa Agropecuaria Brasileira; v.46, n.12, dez. 2011; 1657-1664Pesquisa Agropecuária Brasileira; v.46, n.12, dez. 2011; 1657-16641678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/11046/6700https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11046/6462info:eu-repo/semantics/openAccess2014-05-12T19:11:35Zoai:ojs.seer.sct.embrapa.br:article/11046Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-05-12T19:11:35Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Methods of longitudinal data analysis for the genetic improvement of sugar apple
Métodos de análise de dados longitudinais para o melhoramento genético da pinha
title Methods of longitudinal data analysis for the genetic improvement of sugar apple
spellingShingle Methods of longitudinal data analysis for the genetic improvement of sugar apple
Mariguele, Keny Henrique
Annona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic value
Annona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticos
title_short Methods of longitudinal data analysis for the genetic improvement of sugar apple
title_full Methods of longitudinal data analysis for the genetic improvement of sugar apple
title_fullStr Methods of longitudinal data analysis for the genetic improvement of sugar apple
title_full_unstemmed Methods of longitudinal data analysis for the genetic improvement of sugar apple
title_sort Methods of longitudinal data analysis for the genetic improvement of sugar apple
author Mariguele, Keny Henrique
author_facet Mariguele, Keny Henrique
de Resende, Marcos Deon Vilela
Viana, José Marcelo Soriano
Silva, Fabyano Fonseca e
de Silva, Paulo Sérgio Lima
Knop, Filipe de Castro
author_role author
author2 de Resende, Marcos Deon Vilela
Viana, José Marcelo Soriano
Silva, Fabyano Fonseca e
de Silva, Paulo Sérgio Lima
Knop, Filipe de Castro
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv
CNPq e Capes
dc.contributor.author.fl_str_mv Mariguele, Keny Henrique
de Resende, Marcos Deon Vilela
Viana, José Marcelo Soriano
Silva, Fabyano Fonseca e
de Silva, Paulo Sérgio Lima
Knop, Filipe de Castro
dc.subject.por.fl_str_mv Annona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic value
Annona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticos
topic Annona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic value
Annona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticos
description The objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit.
publishDate 2012
dc.date.none.fl_str_mv 2012-02-10
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/11046
url https://seer.sct.embrapa.br/index.php/pab/article/view/11046
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/11046/6700
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11046/6462
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.46, n.12, dez. 2011; 1657-1664
Pesquisa Agropecuária Brasileira; v.46, n.12, dez. 2011; 1657-1664
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416701715415040