Methods of longitudinal data analysis for the genetic improvement of sugar apple
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/11046 |
Resumo: | The objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit. |
id |
EMBRAPA-4_55079e6a001b6e46e0ddba418dd5f5e8 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/11046 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Methods of longitudinal data analysis for the genetic improvement of sugar appleMétodos de análise de dados longitudinais para o melhoramento genético da pinhaAnnona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic valueAnnona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticosThe objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit.O objetivo deste trabalho foi comparar formas de análise de medidas repetidas para o melhoramento da produção de frutos de pinha (Annona squamosa). Vinte progênies de meias-irmãs foram avaliadas por três anos (2003, 2004 e 2005) em delineamento de blocos ao acaso, com cinco repetições, com cada parcela constituída de quatro plantas. A característica avaliada foi o número de frutos por indivíduo. Os modelos de simetria composta, de simetria composta com variâncias heterogêneas, autorregressivo com variâncias heterogêneas, e antedependência estruturada, foram analisados com o programa ASReml. A estimação dos componentes de variância e a predição dos valores genéticos foram feitas com o procedimento REML/BLUP. A comparação dos modelos foi realizada pelo teste de razão de verossimilhança e pelo critério de Akaike. O modelo antedependência estruturada, para os fatores progênie e parcela, e o modelo multivariado, para o fator resíduo, são as melhores abordagens para a análise dos dados, pois propiciam eficiência e parcimônia em relação ao modelo multivariado completo. Com o modelo antedependência estruturada, é possível a identificação de famílias superiores, em cada colheita, e também de famílias com maior número total de frutos.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraCNPq e CapesMariguele, Keny Henriquede Resende, Marcos Deon VilelaViana, José Marcelo SorianoSilva, Fabyano Fonseca ede Silva, Paulo Sérgio LimaKnop, Filipe de Castro2012-02-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/11046Pesquisa Agropecuaria Brasileira; v.46, n.12, dez. 2011; 1657-1664Pesquisa Agropecuária Brasileira; v.46, n.12, dez. 2011; 1657-16641678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/11046/6700https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11046/6462info:eu-repo/semantics/openAccess2014-05-12T19:11:35Zoai:ojs.seer.sct.embrapa.br:article/11046Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-05-12T19:11:35Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Methods of longitudinal data analysis for the genetic improvement of sugar apple Métodos de análise de dados longitudinais para o melhoramento genético da pinha |
title |
Methods of longitudinal data analysis for the genetic improvement of sugar apple |
spellingShingle |
Methods of longitudinal data analysis for the genetic improvement of sugar apple Mariguele, Keny Henrique Annona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic value Annona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticos |
title_short |
Methods of longitudinal data analysis for the genetic improvement of sugar apple |
title_full |
Methods of longitudinal data analysis for the genetic improvement of sugar apple |
title_fullStr |
Methods of longitudinal data analysis for the genetic improvement of sugar apple |
title_full_unstemmed |
Methods of longitudinal data analysis for the genetic improvement of sugar apple |
title_sort |
Methods of longitudinal data analysis for the genetic improvement of sugar apple |
author |
Mariguele, Keny Henrique |
author_facet |
Mariguele, Keny Henrique de Resende, Marcos Deon Vilela Viana, José Marcelo Soriano Silva, Fabyano Fonseca e de Silva, Paulo Sérgio Lima Knop, Filipe de Castro |
author_role |
author |
author2 |
de Resende, Marcos Deon Vilela Viana, José Marcelo Soriano Silva, Fabyano Fonseca e de Silva, Paulo Sérgio Lima Knop, Filipe de Castro |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
CNPq e Capes |
dc.contributor.author.fl_str_mv |
Mariguele, Keny Henrique de Resende, Marcos Deon Vilela Viana, José Marcelo Soriano Silva, Fabyano Fonseca e de Silva, Paulo Sérgio Lima Knop, Filipe de Castro |
dc.subject.por.fl_str_mv |
Annona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic value Annona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticos |
topic |
Annona squamosa; Akaike; variance and covariance matrix; repeated measure; REML/BLUP; genetic value Annona squamosa; Akaike; matriz de variância e covariância; medidas repetidas; REML/BLUP; valores genéticos |
description |
The objective of this work was to compare the ways of analyzing repeated measures to improve the production of sugar apple (Annona squamosa). Twenty half‑sib progenies were evaluated, over three years (2003, 2004 and 2005), in a randomized block design with five replicates, and each plot was constituted of four plants. The evaluated trait was the number of fruit per individual. The models of compound symmetry, autoregressive with heterogeneous variance, the structured ante‑dependence, and compound symmetry with heterogeneous variance were analyzed using the ASReml software. The estimation of variance components and the prediction of breeding values were made by the REML/BLUP. The comparison of the models was done by the likelihood ratio test and Akaike’s information criterion. The structured ante‑dependence model, for the factors progeny and parcel, and the multivariate model, for the residual factor, are the best approaches for data analysis, providing efficiency and parsimony over the full multivariate model. With the structured ante‑dependence model, it is possible to identify superior families in each harvest, and also the families with larger total number of fruit. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-02-10 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/11046 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/11046 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/11046/6700 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11046/6462 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.46, n.12, dez. 2011; 1657-1664 Pesquisa Agropecuária Brasileira; v.46, n.12, dez. 2011; 1657-1664 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416701715415040 |