Model for soybean production forecast based on prevailing physical conditions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/22912 |
Resumo: | The objective of this work was to evaluate the reliability of the physiological meaning of the enhanced vegetation index (EVI) data for the development of a remote sensing-based procedure to estimate soybean production prior to crop harvest. Time-series data from the moderate resolution imaging spectroradiometer (Modis) were applied to investigate the relationship between local yield fluctuations of soybean and the prevailing physically-driven conditions in the state of Mato Grosso, located in the south of the Brazilian Amazon. The developed methodology was based on the coupled model (CM). The CM provides production estimates for early January, using images from the maximum crop development period. Production estimates were validated at three different spatial scales: state, municipality, and local. At the state and municipality levels, the results obtained from the CM were compared with official agricultural statistics from Instituto Brasileiro de Geografia e Estatística and Companhia Nacional de Abastecimento, from 2001 to 2011. The coefficients of determination ranged from 0.91 to 0.98, with overall result of R2=0.96 (p≤0.01), indicating that the model adheres to official statistics. At the local level, spatially distributed data were compared with production data from 422 crop fields. The coefficient of determination (R2=0.87) confirmed the reliability of the EVI for its applicability on remote sensing-based models for soybean production forecast. |
id |
EMBRAPA-4_6110ddbd19b3b2b3bf1c736959c16698 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/22912 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Model for soybean production forecast based on prevailing physical conditionsModelo para previsão da produção de soja baseado em condições físicas predominantesagriculture; EVI; Modis; remote sensing; satelliteagricultura; EVI; Modis; sensoriamento remoto; satéliteThe objective of this work was to evaluate the reliability of the physiological meaning of the enhanced vegetation index (EVI) data for the development of a remote sensing-based procedure to estimate soybean production prior to crop harvest. Time-series data from the moderate resolution imaging spectroradiometer (Modis) were applied to investigate the relationship between local yield fluctuations of soybean and the prevailing physically-driven conditions in the state of Mato Grosso, located in the south of the Brazilian Amazon. The developed methodology was based on the coupled model (CM). The CM provides production estimates for early January, using images from the maximum crop development period. Production estimates were validated at three different spatial scales: state, municipality, and local. At the state and municipality levels, the results obtained from the CM were compared with official agricultural statistics from Instituto Brasileiro de Geografia e Estatística and Companhia Nacional de Abastecimento, from 2001 to 2011. The coefficients of determination ranged from 0.91 to 0.98, with overall result of R2=0.96 (p≤0.01), indicating that the model adheres to official statistics. At the local level, spatially distributed data were compared with production data from 422 crop fields. The coefficient of determination (R2=0.87) confirmed the reliability of the EVI for its applicability on remote sensing-based models for soybean production forecast.O objetivo deste trabalho foi avaliar a confiabilidade do significado fisiológico de dados do índice de vegetação “enhanced vegetation index” (EVI) no desenvolvimento de um procedimento baseado em sensoriamento remoto para estimar a produção de soja antes da colheita. Foram aplicados dados de séries temporais do “moderate resolution imaging spectroradiometer” (Modis) para investigar a relação entre as flutuações locais na produtividade da soja e as condições físicas predominantes no Estado de Mato Grosso, localizado no sul da Amazônia brasileira. A metodologia desenvolvida foi baseada no modelo acoplado (CM). O CM fornece estimativas de produção para o início de janeiro, ao utilizar imagens do período de máximo desenvolvimento da cultura. As estimativas de produção foram validadas em três escalas espaciais diferentes: estadual, municipal e local. Nos níveis estadual e municipal, os resultados obtidos a partir do CM foram comparados às estatísticas agrícolas oficiais do Instituto Brasileiro de Geografia e Estatística e da Companhia Nacional de Abastecimento, de 2001 a 2011. Os coeficientes de determinação variaram entre 0,91 e 0,98, com resultado global de R2=0,96 (p≤0,01), o que indica que o modelo se ajusta às estatísticas oficiais. No nível local, os dados espacialmente distribuídos foram comparados a dados de produção de 422 lavouras. O coeficiente de determinação (R2=0,87) confirmou a confiabilidade do EVI para ser aplicado em modelos baseados em sensoriamento remoto, para previsão da produção de soja.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraLand Processes Distributed Active Archive Center (LP DAAC) of National Aeronautical and Space Administration (Nasa)Earth Resources Observation and Science (EROS) Center from U.S. Geological Survey (USGS)Gusso, AnibalArvor, DamienDucati, Jorge Ricardo2017-03-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/22912Pesquisa Agropecuaria Brasileira; v.52, n.2, fev. 2017; 95-103Pesquisa Agropecuária Brasileira; v.52, n.2, fev. 2017; 95-1031678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/22912/13707Direitos autorais 2017 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2017-03-24T19:50:52Zoai:ojs.seer.sct.embrapa.br:article/22912Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2017-03-24T19:50:52Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Model for soybean production forecast based on prevailing physical conditions Modelo para previsão da produção de soja baseado em condições físicas predominantes |
title |
Model for soybean production forecast based on prevailing physical conditions |
spellingShingle |
Model for soybean production forecast based on prevailing physical conditions Gusso, Anibal agriculture; EVI; Modis; remote sensing; satellite agricultura; EVI; Modis; sensoriamento remoto; satélite |
title_short |
Model for soybean production forecast based on prevailing physical conditions |
title_full |
Model for soybean production forecast based on prevailing physical conditions |
title_fullStr |
Model for soybean production forecast based on prevailing physical conditions |
title_full_unstemmed |
Model for soybean production forecast based on prevailing physical conditions |
title_sort |
Model for soybean production forecast based on prevailing physical conditions |
author |
Gusso, Anibal |
author_facet |
Gusso, Anibal Arvor, Damien Ducati, Jorge Ricardo |
author_role |
author |
author2 |
Arvor, Damien Ducati, Jorge Ricardo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Land Processes Distributed Active Archive Center (LP DAAC) of National Aeronautical and Space Administration (Nasa) Earth Resources Observation and Science (EROS) Center from U.S. Geological Survey (USGS) |
dc.contributor.author.fl_str_mv |
Gusso, Anibal Arvor, Damien Ducati, Jorge Ricardo |
dc.subject.por.fl_str_mv |
agriculture; EVI; Modis; remote sensing; satellite agricultura; EVI; Modis; sensoriamento remoto; satélite |
topic |
agriculture; EVI; Modis; remote sensing; satellite agricultura; EVI; Modis; sensoriamento remoto; satélite |
description |
The objective of this work was to evaluate the reliability of the physiological meaning of the enhanced vegetation index (EVI) data for the development of a remote sensing-based procedure to estimate soybean production prior to crop harvest. Time-series data from the moderate resolution imaging spectroradiometer (Modis) were applied to investigate the relationship between local yield fluctuations of soybean and the prevailing physically-driven conditions in the state of Mato Grosso, located in the south of the Brazilian Amazon. The developed methodology was based on the coupled model (CM). The CM provides production estimates for early January, using images from the maximum crop development period. Production estimates were validated at three different spatial scales: state, municipality, and local. At the state and municipality levels, the results obtained from the CM were compared with official agricultural statistics from Instituto Brasileiro de Geografia e Estatística and Companhia Nacional de Abastecimento, from 2001 to 2011. The coefficients of determination ranged from 0.91 to 0.98, with overall result of R2=0.96 (p≤0.01), indicating that the model adheres to official statistics. At the local level, spatially distributed data were compared with production data from 422 crop fields. The coefficient of determination (R2=0.87) confirmed the reliability of the EVI for its applicability on remote sensing-based models for soybean production forecast. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03-24 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/22912 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/22912 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/22912/13707 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2017 Pesquisa Agropecuária Brasileira info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2017 Pesquisa Agropecuária Brasileira |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.52, n.2, fev. 2017; 95-103 Pesquisa Agropecuária Brasileira; v.52, n.2, fev. 2017; 95-103 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416709080612864 |