Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed

Detalhes bibliográficos
Autor(a) principal: Rossi, Robson Marcelo
Data de Publicação: 2014
Outros Autores: Martins, Elias Nunes, Lopes, Paulo Sávio, Silva, Fabyano Fonseca e
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/19597
Resumo: The objective of this work was to present alternative uni‑ and bivariate modeling procedures for the evaluation of feed conversion (FC) of the Piau swine breed, using Bayesian inference. The effects of sex and genotype on animal FC were evaluated by the Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA) procedures. The univariate model was evaluated using different distributions for the error – normal (Gaussian), t‑Student, gamma, log‑normal, and skew‑normal –, whereas, for the bivariate model, the normal error was considered. The skew‑normal distribution was the most parsimonious model to infer on the direct response (univariate) of FC to the effects of sex and genotype, which were nonsignificant. The bivariate model was capable to identify significant differences on weight gain and feed intake in significance levels not detected by the univariate model. Moreover, it was also able to detect differences between sexes, when grouped by NN (male, 2.73±0.04; female, 2.68±0.04) and Nn (male, 2.70±0.07; female, 2.64±0.07) genotypes, and revealed greater accuracy and precision for nutritional inferences. In both approaches, the Bayesian method proves flexible and efficient for assessing animal nutritional performance.
id EMBRAPA-4_6d9f6e3529f8ccf07e9a19ec1d94e45a
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/19597
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breedAnálise bayesiana univariada e bivariada para a conversão alimentar de suínos da raça Piaumultivariate analysis; nutritional performance; INLA; MCMC; pig stress syndromeanálise multivariada; desempenho nutricional; INLA; MCMC; síndrome do estresse suínoThe objective of this work was to present alternative uni‑ and bivariate modeling procedures for the evaluation of feed conversion (FC) of the Piau swine breed, using Bayesian inference. The effects of sex and genotype on animal FC were evaluated by the Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA) procedures. The univariate model was evaluated using different distributions for the error – normal (Gaussian), t‑Student, gamma, log‑normal, and skew‑normal –, whereas, for the bivariate model, the normal error was considered. The skew‑normal distribution was the most parsimonious model to infer on the direct response (univariate) of FC to the effects of sex and genotype, which were nonsignificant. The bivariate model was capable to identify significant differences on weight gain and feed intake in significance levels not detected by the univariate model. Moreover, it was also able to detect differences between sexes, when grouped by NN (male, 2.73±0.04; female, 2.68±0.04) and Nn (male, 2.70±0.07; female, 2.64±0.07) genotypes, and revealed greater accuracy and precision for nutritional inferences. In both approaches, the Bayesian method proves flexible and efficient for assessing animal nutritional performance.O objetivo deste trabalho foi apresentar modelagens alternativas, uni e bivariadas, para avaliação da conversão alimentar (CA) de suínos da raça Piau, com uso de inferência bayesiana. Os efeitos de sexo e genótipo sobre a CA dos animais foram avaliados por meio de procedimentos de simulação de Monte Carlo via cadeias de Markov (MCMC) e de integração aproximada aninhada de Laplace (INLA). O modelo univariado foi avaliado com diferentes distribuições para o erro – normal (gaussiana), t de Student, gama, log‑normal e skew‑normal –, enquanto, para o modelo bivariado, considerou-se o erro normal. A distribuição skew‑normal foi o modelo mais parcimonioso para inferir sobre a resposta direta (univariada) da CA aos efeitos de sexo e genótipo, os quais não foram significativos. O modelo bivariado foi capaz de identificar diferenças significativas no ganho de peso e no consumo de ração em níveis de significância não detectados pelo modelo univariado. Além disso, ele também foi capaz de detectar diferenças entre sexos, quando agrupados por genótipos NN (machos, 2,73±0,04; fêmeas, 2,68±0,04) e Nn (machos, 2,70±0,07; fêmeas, 2,64±0,07), e revelou maior acurácia e precisão nas inferências nutricionais. Em ambas as abordagens, o método bayesiano mostra-se flexível e eficiente para a avaliação do desempenho nutricional dos animais.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraFundação Araucária e CAPESRossi, Robson MarceloMartins, Elias NunesLopes, Paulo SávioSilva, Fabyano Fonseca e2014-11-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/19597Pesquisa Agropecuaria Brasileira; v.49, n.10, out. 2014; 754-761Pesquisa Agropecuária Brasileira; v.49, n.10, out. 2014; 754-7611678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/19597/12801https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/19597/11859info:eu-repo/semantics/openAccess2014-11-14T18:14:43Zoai:ojs.seer.sct.embrapa.br:article/19597Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-11-14T18:14:43Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
Análise bayesiana univariada e bivariada para a conversão alimentar de suínos da raça Piau
title Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
spellingShingle Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
Rossi, Robson Marcelo
multivariate analysis; nutritional performance; INLA; MCMC; pig stress syndrome
análise multivariada; desempenho nutricional; INLA; MCMC; síndrome do estresse suíno
title_short Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
title_full Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
title_fullStr Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
title_full_unstemmed Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
title_sort Univariate and bivariate Bayesian analysis for feed conversion of the Piau swine breed
author Rossi, Robson Marcelo
author_facet Rossi, Robson Marcelo
Martins, Elias Nunes
Lopes, Paulo Sávio
Silva, Fabyano Fonseca e
author_role author
author2 Martins, Elias Nunes
Lopes, Paulo Sávio
Silva, Fabyano Fonseca e
author2_role author
author
author
dc.contributor.none.fl_str_mv
Fundação Araucária e CAPES
dc.contributor.author.fl_str_mv Rossi, Robson Marcelo
Martins, Elias Nunes
Lopes, Paulo Sávio
Silva, Fabyano Fonseca e
dc.subject.por.fl_str_mv multivariate analysis; nutritional performance; INLA; MCMC; pig stress syndrome
análise multivariada; desempenho nutricional; INLA; MCMC; síndrome do estresse suíno
topic multivariate analysis; nutritional performance; INLA; MCMC; pig stress syndrome
análise multivariada; desempenho nutricional; INLA; MCMC; síndrome do estresse suíno
description The objective of this work was to present alternative uni‑ and bivariate modeling procedures for the evaluation of feed conversion (FC) of the Piau swine breed, using Bayesian inference. The effects of sex and genotype on animal FC were evaluated by the Markov chain Monte Carlo (MCMC) and the integrated nested Laplace approximation (INLA) procedures. The univariate model was evaluated using different distributions for the error – normal (Gaussian), t‑Student, gamma, log‑normal, and skew‑normal –, whereas, for the bivariate model, the normal error was considered. The skew‑normal distribution was the most parsimonious model to infer on the direct response (univariate) of FC to the effects of sex and genotype, which were nonsignificant. The bivariate model was capable to identify significant differences on weight gain and feed intake in significance levels not detected by the univariate model. Moreover, it was also able to detect differences between sexes, when grouped by NN (male, 2.73±0.04; female, 2.68±0.04) and Nn (male, 2.70±0.07; female, 2.64±0.07) genotypes, and revealed greater accuracy and precision for nutritional inferences. In both approaches, the Bayesian method proves flexible and efficient for assessing animal nutritional performance.
publishDate 2014
dc.date.none.fl_str_mv 2014-11-03
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/19597
url https://seer.sct.embrapa.br/index.php/pab/article/view/19597
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/19597/12801
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/19597/11859
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.49, n.10, out. 2014; 754-761
Pesquisa Agropecuária Brasileira; v.49, n.10, out. 2014; 754-761
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416685404815360