Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/20785 |
Resumo: | The objective of this work was to evaluate the suitability of the multivariate method of principal component analysis (PCA) using the GGE biplot software for grouping sunflower genotypes for their reaction to Alternaria leaf spot disease (Alternariaster helianthi), and for their yield and oil content. Sixty‑nine genotypes were evaluated for disease severity in the field, at the R3 growth stage, in seven growing seasons, in Londrina, in the state of Paraná, Brazil, using a diagrammatic scale developed for this disease. Yield and oil content were also evaluated. Data were standardized using the software Statistica, and GGE biplot was used for PCA and graphical display of data. The first two principal components explained 77.9% of the total variation. According to the polygonal biplot using the first two principal components and three response variables, the genotypes were divided into seven sectors. Genotypes located on sectors 1 and 2 showed high yield and high oil content, respectively, and those located on sector 7 showed tolerance to the disease and high yield, despite the high disease severity. The principal component analysis using GGE biplot is an efficient method for grouping sunflower genotypes based on the studied variables. |
id |
EMBRAPA-4_b2e8306e76401a304d6aae20a746a60c |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/20785 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplotAgrupamento de genótipos de girassol quanto à produtividade, ao teor de óleo e à reação à mancha de alternária por GGE biplotAlternariaster helianthi; Helianthus annuus; disease resistance; principal component analysisAlternariaster helianthi; Helianthus annuus; resistência a doenças; análise de componentes principaisThe objective of this work was to evaluate the suitability of the multivariate method of principal component analysis (PCA) using the GGE biplot software for grouping sunflower genotypes for their reaction to Alternaria leaf spot disease (Alternariaster helianthi), and for their yield and oil content. Sixty‑nine genotypes were evaluated for disease severity in the field, at the R3 growth stage, in seven growing seasons, in Londrina, in the state of Paraná, Brazil, using a diagrammatic scale developed for this disease. Yield and oil content were also evaluated. Data were standardized using the software Statistica, and GGE biplot was used for PCA and graphical display of data. The first two principal components explained 77.9% of the total variation. According to the polygonal biplot using the first two principal components and three response variables, the genotypes were divided into seven sectors. Genotypes located on sectors 1 and 2 showed high yield and high oil content, respectively, and those located on sector 7 showed tolerance to the disease and high yield, despite the high disease severity. The principal component analysis using GGE biplot is an efficient method for grouping sunflower genotypes based on the studied variables.O objetivo deste trabalho foi avaliar a adequação do uso do método multivariado de análise de componentes principais (ACP), com uso do programa GGE biplot, para o agrupamento de genótipos de girassol quanto à sua reação à mancha de alternária (Alternariaster helianthi), e quanto à produtividade e ao teor de óleo. Sessenta e nove genótipos foram avaliados quanto à severidade da doença em campo, na fase de desenvolvimento R3, em sete safras, em Londrina, PR, com uso de uma escala diagramática própria, desenvolvida para esta doença. A produtividade e o teor de óleo também foram avaliados. Os dados foram padronizados com o programa Statistica, e o GGE biplot foi utilizado para ACP e exibição gráfica dos dados. Os dois primeiros componentes principais explicaram 77,9% da variação total. De acordo com o biplot poligonal, obtido com os dois primeiros componentes principais e as três variáveis resposta, os genótipos foram divididos em sete setores. Os genótipos alocados nos setores 1 e 2 apresentaram alta produtividade e alto teor de óleo, respectivamente, e os agrupados no setor 7 apresentaram tolerância à doença e alta produtividade, apesar de elevada severidade da doença. O método de análise de componentes principais com uso do GGE biplot é eficiente para agrupar genótipos de girassol com base nas variáveis estudadas.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraLeite, Regina Maria Villas Bôas de CamposOliveira, Maria Cristina Neves de2015-09-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/20785Pesquisa Agropecuaria Brasileira; v.50, n.8, ago. 2015; 649-657Pesquisa Agropecuária Brasileira; v.50, n.8, ago. 2015; 649-6571678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/20785/13002https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/20785/13012info:eu-repo/semantics/openAccess2015-09-03T19:44:38Zoai:ojs.seer.sct.embrapa.br:article/20785Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2015-09-03T19:44:38Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot Agrupamento de genótipos de girassol quanto à produtividade, ao teor de óleo e à reação à mancha de alternária por GGE biplot |
title |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot |
spellingShingle |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot Leite, Regina Maria Villas Bôas de Campos Alternariaster helianthi; Helianthus annuus; disease resistance; principal component analysis Alternariaster helianthi; Helianthus annuus; resistência a doenças; análise de componentes principais |
title_short |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot |
title_full |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot |
title_fullStr |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot |
title_full_unstemmed |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot |
title_sort |
Grouping sunflower genotypes for yield, oil content, and reaction to Alternaria leaf spot using GGE biplot |
author |
Leite, Regina Maria Villas Bôas de Campos |
author_facet |
Leite, Regina Maria Villas Bôas de Campos Oliveira, Maria Cristina Neves de |
author_role |
author |
author2 |
Oliveira, Maria Cristina Neves de |
author2_role |
author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Leite, Regina Maria Villas Bôas de Campos Oliveira, Maria Cristina Neves de |
dc.subject.por.fl_str_mv |
Alternariaster helianthi; Helianthus annuus; disease resistance; principal component analysis Alternariaster helianthi; Helianthus annuus; resistência a doenças; análise de componentes principais |
topic |
Alternariaster helianthi; Helianthus annuus; disease resistance; principal component analysis Alternariaster helianthi; Helianthus annuus; resistência a doenças; análise de componentes principais |
description |
The objective of this work was to evaluate the suitability of the multivariate method of principal component analysis (PCA) using the GGE biplot software for grouping sunflower genotypes for their reaction to Alternaria leaf spot disease (Alternariaster helianthi), and for their yield and oil content. Sixty‑nine genotypes were evaluated for disease severity in the field, at the R3 growth stage, in seven growing seasons, in Londrina, in the state of Paraná, Brazil, using a diagrammatic scale developed for this disease. Yield and oil content were also evaluated. Data were standardized using the software Statistica, and GGE biplot was used for PCA and graphical display of data. The first two principal components explained 77.9% of the total variation. According to the polygonal biplot using the first two principal components and three response variables, the genotypes were divided into seven sectors. Genotypes located on sectors 1 and 2 showed high yield and high oil content, respectively, and those located on sector 7 showed tolerance to the disease and high yield, despite the high disease severity. The principal component analysis using GGE biplot is an efficient method for grouping sunflower genotypes based on the studied variables. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-09-03 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/20785 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/20785 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/20785/13002 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/20785/13012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.50, n.8, ago. 2015; 649-657 Pesquisa Agropecuária Brasileira; v.50, n.8, ago. 2015; 649-657 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416715649941504 |